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Abstract

Dynamic scripting languages, like Python, are growing in popularity and increasingly used
by non-expert programmers. These languages provide high level abstractions such as safe
memory management, dynamic type handling and array bounds checking. The reduction in
boilerplate code enables the concise expression of computation compared to statically typed
and compiled languages. This improves programmer productivity. Increasingly, scripting
languages are used by domain experts to write numerically intensive code in a variety of
domains (e.g. Economics, Zoology, Archaeology and Physics). These programs are often
used not just for prototyping but also in deployment. However, such managed program
execution comes with a significant performance penalty arising from the interpreter having
to decode and dispatch based on dynamic type checking.

Modern computer systems are increasingly equipped with accelerators such as GPUs. How-
ever, the massive speedups that can be achieved by GPU accelerators come at the cost of
program complexity. Directly programming a GPU requires a deep understanding of the
computational model of the underlying hardware architecture. While the complexity of such
devices is abstracted by programming languages specialised for heterogeneous devices such
as CUDA and OpenCL, these are dialects of the low-level C systems programming language
used primarily by expert programmers.

This thesis presents the design and implementation of ALPyNA, a loop parallelisation and
GPU code generation framework. A novel staged parallelisation approach is used to ag-
gressively parallelise each execution instance of a loop nest. Loop dependence relationships
that cannot be inferred statically are deferred for runtime analysis. At runtime, these depen-
dences are augmented with runtime information obtained by introspection and the loop nest
is parallelised. Parallel GPU kernels are customised to the runtime dependence graph, JIT
compiled and executed.

A systematic analysis of the execution speed of loop nests is performed using 12 standard
loop intensive benchmarks. The evaluation is performed on two CPU–GPU machines. One is
a server grade machine while the other is a typical desktop. ALPyNA’s GPU kernels achieve
orders of magnitude speedup over the baseline interpreter execution time (up to 16435x) and
large speedups (up to 179.55x) over JIT compiled CPU code.



The varied performance of JIT compiled GPU code motivates the need for a sophisticated
cost model to select the device providing the best speedups at runtime for varying domain
sizes. This thesis describes a novel lightweight analytical cost model to determine the fastest
device to execute a loop nest at runtime. The ALPyNA Cost Model (ACM) adapts to runtime
dependence analysis and is parameterised on the hardware characteristics of the underlying
target CPU or GPU. The cost model also takes into account the relative rate at which the
interpreter is able to supply the GPU with computational work. ACM is re-targetable to
other accelerator devices and only requires minimal install time profiling.
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1

Chapter 1

Introduction

Dynamic scripting languages, like Python, are growing in popularity and increasingly used
by non-expert programmers [30, 144]. These languages provide high level abstractions such
as safe memory management and dynamic type handling. The reduction in boilerplate code
enables the concise expression of computation compared to statically typed languages. This
improves programmer productivity. Increasingly, scripting languages are used by domain
experts to write numerically intensive code. These programs are often used not just for
prototyping but also in deployment [87, 116, 147].

Many programmers who write numerically intensive code come from a variety of domains
(e.g. Economics, Zoology, Archaeology and Physics). Dynamic languages provide program-
mers with automatic memory management, array bounds checking and better portability.
However such managed program execution comes with a significant performance penalty
arising from the runtime having to decode and dispatch based on dynamic type checking.

Physical limitations [41,151] mean that it is no longer possible to increase the clock speeds of
general purpose CPUs following Moore’s law [97] and Dennard scaling [38]. Consequently,
general purpose compute devices include accelerators [141] such as GPUs.

The massive speedups that can be achieved by GPU accelerators come at the cost of pro-
gram complexity. Directly programming a GPU requires a deep understanding of the com-
putational model of the underlying hardware architecture. While the complexity of such
devices is abstracted by programming languages specialised for heterogeneous devices such
as CUDA and OpenCL, these are dialects of the low-level C systems programming language
used primarily by expert programmers.

Dynamic scripting languages provide bindings to CUDA and OpenCL for programming
GPUs, but the programming model is static and low-level. Many libraries and programming
frameworks exist to ease the burden on programming hardware accelerators e.g. Loopy [74],
Parakeet [124] and River Trail [56]. However, they still require a knowledge of the under-
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lying hardware characteristics and domain experts are typically not proficient accelerator
programmers.

Just-in-Time (JIT) compilers increase the performance of managed languages by compiling
frequently executed code paths to machine code at execution time. In general, JIT com-
pilation targetting a CPU has been widely studied [16]. In the case of dynamic languages,
compilation is complicated by type uncertainty until runtime. Current JIT compilers are very
efficient at generating machine code for a CPU, e.g. HotSpot [105] and PyPy [119].

Research into automatic JIT compilers that take into account devices with diverse execution
models (like GPUs) in a heterogeneous environment is still at a nascent stage. This thesis
describes novel research into automatically JIT compiling Python loop nests for CPU–GPU
platforms. The additional information available at runtime is exploited to optimise code,
structure the thread hierarchy for a GPU, and to parameterise a novel cost model that predicts
which device (CPU or GPU) will minimise the execution time of the loop nest.

1.1 Hypotheses

Dependence analysis produces a valid execution order constraints between sequential com-
putational statements [70]. When applied to loops, dependence analysis enables a compiler
to reason about automatically parallelising them.

The motivation for the thesis research arises from the following hypotheses :

H1. Staged static and dynamic dependence analysis on array-centric loop nests, in a general
purpose dynamic scripting language, will yield higher performance parallel code than
static dependence analysis alone.

H2. Code can be automatically synthesised to target heterogeneous architectures, with min-
imal user intervention. When such code is executed on a resource-aware adaptive Vir-
tual Machine (VM), it will

• almost never degrade performance despite the overheads of dynamically re-targeting
code

• in many instances significantly reduce execution time.

H3. A staged static and dynamic analytical cost-model can accurately determine the quicker
device that will execute a given instance of an array-centric loop nest written in a dy-
namic scripting language in a heterogeneous CPU–GPU environment. Such a cost
model need only be parameterised on the hardware characteristics of the CPU and
the GPU, and requires only installation time profiling of the relevant compute devices
using a simple pre-determined kernel.
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1.2 Contributions

This thesis makes the following five key research contributions:

1. A critical review of existing approaches to loop parallelism and GPU accelera-
tion: In Chapter 3, existing approaches to Just-in-Time (JIT) parallelism that focus on
parallelising well known higher order functions and on parallelising loop nests spec-
ulatively with guard conditions is reviewed. A taxonomy of compiler systems is built
based on resource awareness, target device, parameters to optimise and parallelised
lanaguage control structures. While many parallel compilation techniques exist, we
motivate the need for a staged loop parallelisation framework for dynamic languages.

2. A novel automatic loop parallelisation framework for Python loop nests on het-
erogeneous CPU/GPU platforms that exploits staged analysis and and JIT com-
pilation: Chapter 4 presents the design and implementation of ALPyNA, a loop paral-
lelisation and GPU code generation framework. A novel hybrid staged parallelisation
approach is used to aggressively parallelise each execution instance of a loop nest.
To support staged parallelisation, a static compilation phase parses the loop nest Ab-
stract Syntax Tree (AST) and an in-memory data structure representing the loop is
made available to ALPyNA’s runtime analysis. The dependence graph is built and
evaluated at runtime using introspection; the CPU and GPU kernels are generated spe-
cific to the dependence relationships that emerge for that specific execution instance
of the loop nest. Automatic Just-in-Time (JIT) parallelisation hides complexity from
the programmer while generating GPU kernels tailored to the exact dependence graph
and iteration domain sizes that emerge at runtime. Augmented runtime information
for kernel generation enables effective mapping of iteration domains to parallel GPU
axes and chunking of thread-blocks.

3. A systematic comparative analysis of parallel performance of ALPyNA. Chapter 5
presents a detailed performance analysis of generated GPU code relative to execution
time in the CPython interpreter and JIT compiled CPU code. The evaluation is per-
formed on two CPU–GPU machines. One is a server grade machine while the other
is a typical desktop. The execution time and speed up are compared using twelve
standard loop intensive benchmarks, measuring each benchmark at 5 iteration domain
sizes and with sequential interpreter runtimes varying from 0.21s – 5329s. ALPyNA’s
GPU code achieves orders of magnitude speedup over the baseline interpreter execu-
tion time (up to 16435x measured). We also show speed-ups (up to 179.55x) over the
JIT compiled CPU variants for six of the 12 benchmarks. The varied performance re-
sults of ALPyNA motivate the need for a sophisticated cost model to select the device
providing the best speed-ups for varying iteration domain sizes.
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4. A novel, lightweight, staged and extensible cost model for optimal device selection
to execute loop nests: Chapter 6 derives a novel lightweight predictive cost model to
determine the optimal device in a CPU/GPU environment to JIT compile for every loop
nest instance. This model is designed to adapt to the dependence analysis and custom
kernels generated by ALPyNA at runtime. ALPyNA’s cost model is parameterised
on the hardware characteristics of the underlying target CPU or GPU and requires
minimal install time profiling. The cost model takes into account relative rates at which
an interpreter is able to supply the GPU with computational work. The cost model is
re-targetable to other accelerator devices. The accuracy of the cost model is checked
using the same twelve benchmarks used to characterise the performance of ALPyNA.
We show a misprediction penalty of 14.6% (geometric mean) and a misprediction
range of 14.66% (geometric mean) over a wide range of iteration domain sizes in 360
experiments performed on three different heterogeneous machines. The performance
of the costmodel also performs better than a trained Support Vector Machine (SVM)
model.

These contributions help to improve the accessibility of accelerator performance to devel-
opers working in dynamic languages. We aim to achieve this by implicit automatic paral-
lelisation to ease the burden of reasoning about parallelism. The ALPyNA framework is
written primarily for programming in the Python language, but the principles espoused are
transferrable to other dynamic interpreted languages that have a JIT compiler and we believe
to a range of accelerators.

1.3 Publications and Authorship

The source code for ALPyNA is available under the terms of the GNU Lesser General Pub-
lic License (LGPL) at https://bitbucket.org/djichthys/alpyna. Some of
the material in this dissertation has already been published in peer-reviewed venues. This
dissertation unifies and expands work in the following three publications :

1. JACOB, D., AND SINGER, J. ALPyNA: Acceleration of Loops in Python for Novel
Architectures. In Proceedings of the 6th ACM SIGPLAN International Workshop on

Libraries, Languages and Compilers for Array Programming (2019), Association for
Computing Machinery, pp. 25–34

2. JACOB, D., TRINDER, P., AND SINGER, J. Python programmers have GPUs too: Au-
tomatic Python loop parallelization with staged dependence analysis. In Proceedings

of the 15th ACM SIGPLAN International Symposium on Dynamic Languages (2019),
pp. 42–54

https://bitbucket.org/djichthys/alpyna
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3. JACOB, D., TRINDER, P., AND SINGER, J. Pricing Python Parallelism: A Dynamic
Language Cost Model for Heterogeneous Platforms. In Proceedings of the 16th ACM

SIGPLAN International Symposium on Dynamic Languages (New York, NY, USA,
2020), DLS 2020, Association for Computing Machinery, p. 29–42

The work reported in this dissertation is primarily my own with the following exceptions :

• The empirical study of the prevalence of loop nest control structures within end-user
code (published in Jacob et al [61]) was performed by Jeremy Singer (cf. Section 2.4).

• The definition of loop header dominance and the duality function to elucidate the
derivation of the cost model in Section 6.2 was primarily developed by Jeremy Singer
and reviewed by Phil Trinder.

• The mathematical representations of Equations 6.6, 6.7, 6.9, 6.13 and 6.14 were re-
written and simplified by Jeremy Singer and Phil Trinder.

• The SVM training model used as a comparison baseline for ACM (Section 6.3.3) was
developed by Jeremy Singer.

1.4 Thesis Outline

The remainder of this dissertation is organised as follows:

• Chapter 2 – Background : This chapter presents technical concepts foundational to the
rest of the thesis. It first introduces Virtual Machines (VM) and JIT compilers. It then
introduces the idea of dependence analysis and parallelisation of loops. The chapter
also introduces the execution model and the programming model of a GPU. The last
part of this chapter is a study of the prevalence of loops in a large corpus of publically
available Python programs.

• Chapter 3 – Literature Survey: This chapter examines current relevant and related work
in the field of JIT compiling dynamic scripting languages for heterogeneous systems.
A particular emphasis is placed on exploring related JIT compiler technologies for
accelerators in dynamic languages.

• Chapter 4 – System architecture : This chapter introduces ALPyNA a staged depen-
dence analysis and runtime parallelisation framework for Python. The simple Appli-
cation Programming Interface (API), the motivations, capabilities and the implemen-
tation of ALPyNA are described here.
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• Chapter 5 – Performance Evaluation of ALPyNA : This chapter evaluates the perfor-
mance of ALPyNA’s code generation capabilities using 12 loop intensive benchmarks
over a wide variety of loop domain sizes. The overheads that affect the overall per-
formance gain of JIT compilation is presented to motivate the development of a cost
model.

• Chapter 6 – Cost model description and evaluation: This chapter derives a light-weight
cost model that is integrated into ALPyNA and is capable of adapting to its staged
analysis and runtime code generation capabilities. It predicts the faster device in a
CPU/GPU heterogeneous environment. This is used to guide runtime code generation
and JIT compilation. The prediction accuracy of the cost model is evaluated on three
platforms and compared to a trained SVM model.

• Chapter 7 – Conclusion: The concluding chapter summarises the main contributions
of this thesis, the limitations of the implementation and possible solutions to overcome
such limitations. Further avenues to develop this work are also discussed.
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Chapter 2

Background

This chapter reviews the relevant background material for the dissertation and sets out the
main concepts related to JIT compilers, dependence analysis, GPU hardware architecture and
the hierarchical parallel thread computation model for programming a GPU. The material in
this chapter discusses the underlying concepts and technologies that underpin the design of
ALPyNA (Chapter 4). Figure 2.1 gives a summary of the background topics in this chapter
and how they relate to each other.

Section 2.1 introduces the Python language and then describes Virtual Machine (VM) envi-
ronments for dynamic interpreted languages and accelerating programs written in managed
languages using Just-in-Time (JIT) compilation. While Chapter 3 discusses broader efforts in
Python and other dynamic languages to optimise performance, we will focus on the CPython
interpreter [122, 123] and the supporting Numba compiler [78] used to accelerate Python
code.

The core concepts that underpin dependence analysis and loop parallelisation are introduced
in Section 2.2. These concepts enable ALPyNA to parallelise loop nest computation safely
and effectively. Section 2.3 provides an overview of heterogeneous computer systems which
combine general purpose CPU devices with other accelerators. The work done in this thesis
focusses on GPU accelerators. To this end, Section 2.3.1 describes the hardware architecture
and scheduling mechanisms within a GPU while Section 2.3.2 describes the CUDA/OpenCL
programming model.

Finally, to motivate the need for loop parallelisation, Section 2.4 presents statistical analysis
to quantify the prevalence of Python loop nests in a large body of publicly available Python
software.
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Figure 2.1: Conceptual overview of topics covered in Chapter 2

2.1 Language Runtimes and JIT Compilers

Python is a dynamic language [14] commonly executed on a Virtual Machine (VM). The
CPython VM is the reference implementation of Python as well as the most widely used.
This section describes various relevant features of a VM and the design choices as imple-
mented in CPython.

2.1.1 Python

Python is a general purpose dynamic programming language that was designed by Guido van
Rossum in 1989 [122]. Its popularity and adoption rate have been steadily rising over many
years and it ranks highly in many surveys, e.g. [30, 144]. Python’s simplicity and dynamic
nature have contributed to its increased adoption for general purpose programming. Python
is platform independent and is widely deployed in many different types of systems from tiny
embedded platforms [28] to server nodes [87, 116].

Python developers program in various application domains such as archaeology [112], zool-
ogy [42], astronomy [120], bio-informatics [139], and meteorology [84]. It is widely adopted
in applications that utilise data science [93] and machine learning [107].

Features that contribute to the popularity of Python include dynamic typing, a reference
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Figure 2.2: CPython : Compilation and Execution Overview

counting and cycle detecting garbage collector, and an easily extensible Foreign Function
Interface (FFI). Python also provides limited functional programming support [77] using
map,filter and reduce higher order functions. Python program execution by the
CPython Virtual Machine (VM) makes it platform independent and portable.

Python code is executed largely in a userspace context. System calls to the Operating System
(OS) happen through calls to the FFI which in turn dispatch the system call to the OS. Error
causing exceptions are caught in the VM (if not explicitly handled by the user) and are not
propagated to the wider system.

2.1.2 CPython Virtual Machine

Formally, virtualisation involves the construction of an isomorphism that maps
a virtual guest system to a real host. – Smith and Nair [132].

The VM is a program execution environment that abstracts away the underlying execution
model of the CPU and the OS on which it executes. A VM directly executing a High Level
Language without first compiling it into machine instructions is called an interpreter.

Figure 2.2 provides an overview of the steps involved in the compilation and execution of
an program interpreted by a VM. An interpreter will typically use the same front-end com-
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ponents as a static compiler such as lexical, syntax and semantic analysis phases to generate
an Abstract Syntax Tree (AST). The AST is further lowered into an Intermediate Repre-
sentation (IR) (Python bytecode) that is executed by the interpreter. Unlike compilers that
generate machine code, the IR representation is much more abstract. When the predomi-
nant computational model is a CPU, the IR is considered hardware agnostic. However, this
assumption breaks down in a heterogeneous compute environment as explained in Section
2.3.

A Python program can be compiled from Python source code to Python bytecode at pro-
gram startup. Precompiled Python bytecode representations are stored in .pyc files and
can be directly interpreted by the VM. The CPython interpreter starts running the compiled
Python bytecode. The interpreter follows a decode and dispatch execution model. It sequen-
tially fetches each bytecode, evaluates and then executes it. The CPython VM interpreter
is implemented as a stack machine and maintains an execution stack. Each function call is
maintained on a call stack.

The use of a VM lends itself well to the dynamic type system of the Python language. The
data types of the objects are only known at runtime. As each bytecode instruction is dis-
patched, the types are evaluated from the objects popped from the execution stack. At run-
time the interpreter can also check for memory bounds violations when accessing vectors
and throw exceptions when necessary.

The Garbage Collected (GC) memory model (Jones et al [65]) of Python helps reduce boil-
erplate code required to manage dynamically allocated memory within a program. The
CPython VM uses a heap at runtime to allocate data objects. The memory is automati-
cally managed using a reference counting GC. The GC automatically frees data objects that
are no longer required when no references to the data objects remain or when the data object
goes out of scope.

2.1.3 JIT compilation

CPython executes bytecodes sequentially in a decode and dispatch manner. To simplify syn-
chronisation, a Global Interpreter Lock (GIL) is used in interpreter execution [22]. The GIL
guarantees atomicity during the execution of any bytecode within the instruction stream.
This ensures that the programs can be written without requiring explicit language level se-
mantics to guarantee data consistency during execution. However, this comes at the cost of
not being able to take advantage of parallel execution performance gains.

CPython supports multi-threading superficially by serialising execution of the threads and
uses time-slicing to distribute execution over a single core. Threads can be pre-empted when
Input / Output (IO) events force a thread to go to sleep. This design accommodates the use
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Figure 2.3: JIT compilation of managed languages

of a GIL in the interpreter.

JIT compilation has been widely used to speed up execution of interpreted languages (Ay-
cock et al [16]). Modern JIT compilers tend to have the following main components to speed
up interpreted code:

1. Hot path detection: Hot paths in a VM can be detected in software by checking for
code with backward branches (denoting loops) or by maintaining counters to record
repeated execution paths. Hardware support for such features could include instru-
menting the Program Counter (PC) to check for repeated execution.

2. Code generation and optimisation:

• Hot execution paths are translated and optimised from bytecode to machine code
for the target device e.g. Graal [40]. Figure 2.3a shows an overview of the
adaptive JIT compilation process.

• Tracing JIT compilers trace, optimise and memoise hot execution paths rather
than translating bytecode. Upon detection of a hot path, the VM stores all the
binary instructions dispatched by the interpreter for execution. This instruction
stream is optimised and guard conditions are inserted at points where control
flow diverges. Tracing JIT compilers are used in systems like Dynamo (Bala et
al [18]) and in the PyPy Python VM (Bolz et al [27]). Figure 2.3b provides a
high level overview of a tracing JIT compiler.

ALPyNA (Chapter 4) targets loop nests for JIT compilation. Code is generated for CPU and
GPU targets. Loop nests are analysed for parallel execution and compiled using the Numba
compiler [78].
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2.1.4 Numba – A JIT compiler for Python

Numpy Scientific calculations written in Python mandate performance oriented libraries
and tools. Numpy [148] is a popular module used by Python programmers to perform statis-
tical analysis and other numerically intensive computation. The primary data structure used
by Numpy is a homogeneous multi-dimensional object (ndarray). The ndarray can store
data of any fixed size numerical types like uint32, int16, float32, float64 etc. Data is stored
in contiguous memory. This property allows the underlying memory of the ndarray object
to be accelerated in high performance computation libraries. These libraries are called from
the interpreter using Python’s Foreign Function Interface (FFI) bindings. Numpy functions
are normally written using statically compiled high performance languages like C.

Numba is a high performance LLVM [79] based JIT compiler (Lam et al [78]). It supports
JIT compilation of functions accessing elements of a Numpy ndarray with non-trivial index-
ing. Only functions marked for compilation using Python’s decorator syntax are compiled.

Built-in FFI library functions that operate on Numpy arrays are optimised and fast. However,
computation on Numpy arrays with complex indexing of ndarray elements is slow due to
the heavy overhead of executing looping and control flow structures through the interpreter.
Accelerating this code could be done by writing custom Python FFI functions. However this
is arduous and error prone because reference counting for each object that is passed through



2.1. Language Runtimes and JIT Compilers 13

the Python Foreign Function Interface (FFI) is the responsibility of the developer. Numba
eases this burden by directly analysing Python code and compiling it.

Numba is not a tracing JIT compiler. It is not intended to be used as a whole program
compiler. It is instead intended to be used as an optional accelerating compiler for functions
annotated by the developer. Ideally these functions are leaf functions because Numba does
not recursively compile functions called from a decorated function. Numba uses the LLVM
compiler tool-chain to compile to machine code. The LLVM IR requires information about
the types of the data objects on which the computation is performed. Numba performs type
inference on the data objects within a function before lowering it into LLVM IR. As code
written in Python is dynamically typed, this inference occurs at runtime for each call to the
function, unless the function is decorated with the type parameterised @jit call. Listings 2.1
and 2.2 show Numba annotations applied to compile functions for CPU and GPU targets
respectively.

Listing 2.1: Numba JIT compilation of
saxpy (Section 5.1) targeting the CPU
@jit(’(float32[:], float32[:],

float32[:], float32, int32)’)

def saxpy(out, a, b, alpha,lim) :

for i in range(0,lim):

out[i] = alpha * a[i] + b[i]

Listing 2.2: Numba JIT compilation of
saxpy (Section 5.1) targeting the GPU
@cuda.jit(’(float32[:],

float32[:], float32[:],

float32, int32)’)

def saxpy(out, a, b, alpha,lim) :

tx = cuda.threadIdx.x

bx = cuda.blockIdx.x

bw = cuda.blockDim.x

x = (bw * bx) + tx

if x >= lim :

return

out[x] = alpha * a[x] + b[x]

Numba utilises LLVM’s MCJIT functionality to compile and link JIT compiled machine
code for the CPU. LLVM MCJIT objects allow very basic caching for compiled code.
Numba exploits this property and memoises machine code compiled for each type signa-
ture of a method that the compiler encounters at runtime. To maintain API stability, Numba
uses LLVM’s C API bindings using a tiny wrapper library (llvmlite) rather than the C++ API.

Numba also supports JIT compilation targeting the GPU. Computational kernels written in
a restricted form of Python, that exposes the underlying CUDA programming model, are
compiled into NVVM IR [103]. This is then optimised and lowered into machine code
targeting NVIDIA GPUs 1. However, these compute kernels have to be expressed in GPU

1OpenCL backend was work in progress at the time of performing experiments. It has recently been merged
into a stable version of Numba
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programming language idioms (Section 2.3.2). ALPyNA relies on Numba’s CUDA interface
bindings to compile and execute auto-generated GPU kernels. Numba also exposes GPU
intrinsics within compute kernels.

2.1.5 Section Summary

This section has introduced the basic working principles of VMs for dynamic langaguages
with a particular emphasis on Python. A brief description of the inner workings of the
CPython VM is provided. As the CPython VM only interprets a program, various JIT com-
pilation techniques are used to speed up program execution. The work in this thesis is done
within the context of a JIT compilation environment. Loop nests are, by definition, a repeti-
tive control structure and are very often detected as hot-paths (Ardö et al [10]). Dependence
analysis of loop nests inform an optimising compiler about the extent of parallel execution
possible within a loop nest. Section 2.2 reviews dependence analysis theory and the tech-
niques used to extract loop level parallelism within a loop nest.

2.2 Dependence analysis

Reasoning about the correct execution schedule of statements in a loop nest requires analysis
of the order of writes to and reads from the same memory location. ALPyNA’s loop paralleli-
sation analyses dependences to determine which loops in a loop nest can safely be executed
in parallel (Section 4.2).

Allen and Kennedy [70], define the existence of a data dependence relationship between two
statements in a region of code iff both statements access the same memory location and at
least one of the operations is a write. A dependence relationship is defined to be established
between a source and a sink. There are three basic dependence relationships based on the
temporal order of the Load–Store classification of the source and sink.

1. True dependence (δ): In any pair of load–store operations on a memory location, the
earlier operation stores into memory (definition) followed by the load operation (use).
The dependence relationship ensures that the value used by the load operation is not an
older stale value. This dependence type is also known as a Read–after–Write (RAW)
dependence (Figure 2.5a).

2. Anti dependence (δ−1): In a pair of load–store operations on a memory location, the
earlier operation loads from memory followed by a store. This dependence relationship
prevents a memory location being clobbered before every valid use. It is also known
as a Write–after–Read (WAR) dependence (Figure 2.5b).
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Figure 2.5: Basic dependence types

3. Output dependence (δo): If both operations on a memory location are stores, an output
dependence captures the temporal order of these operations to prevent the later store

operation from being clobbered by the earlier store operation due to a re-ordering
of instructions. This dependence type is also known as a Write–after–Write (WAW)
dependence (Figure 2.5c).

A loop-carried dependence occurs when a dependence source occurs on an earlier execution
instance of a loop nest than the dependence sink. If both the source and the sink occur within
the same execution instance of a loop nest, the dependence is classified as loop independent.
A loop independent dependence determines the order of load–store operations within each
loop execution instance. Theoretically, there is a dependence from each statement instance

(identified as a dependence source) to another statement instance (identified as a dependence
sink). However, the memory and time constraints required to capture every instance of a
dependence is impractical.

A large category of numerical loop nest computation consists of the dereferencing of arrays,
and this is the focus of ALPyNA’s auto parallelisation. When array subscripts are linear
functions of loop nest iterators, the dependences between the source and sink in each loop
execution instance can be modelled precisely using formal mathematical and geometric rep-
resentations [70, 76]. A dependence vector, indexed by the ordering of the loops in the loop
nest, represents the dependences for each source – sink pair. The vector is indexed from the
outermost to the innermost loop. If the source of a dependence occurs on iteration i and
the sink occurs on iteration j of a loop, then the dependence between the source and sink is
denoted as shown in Equation 2.1 [70, 158].
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for i in range(0,100,1):
for j in range(0,100,1):

for k in range(0,100,1):

S2   : ............ = a[i , j , k]

S1  : a[i+1 , j , k-1] = .........

S2

S1

Figure 2.6: Example of loop carried dependences. Dependence vector for this loop nest is
[<,=, >]

Dependence =


< if (i ≺ j)

= if (i = j)

> if (i � j)

(2.1)

The level of a loop carried dependence is denoted by the index of the leftmost non-‘=’ sym-
bol in the dependence vector. The level of a dependence carried by loop ‘p’ is denoted by
(δp, δ

−1
p , δop) for true,anti and output dependences respectively. A loop independent depen-

dence is denoted by δ∞. Dependence analysis is an effective technique to extract loop level
parallelism [52] when applied to loop nests and parameterised by such dependence vectors
and loop levels. A dependence graph between statements in a loop nest helps to reason about
the correctness of any scheduling transformations within loop nests. It determines the order
in which loops should be executed to maintain the correct ordering of computation.

Consider the loop nest in Figure 2.6. The source of the dependence for array ’a’ is state-
ment S1 and the sink is statement S2. The dependence vector for relationship S1 → S2

contributed by the array variable ’a’ is (i, j, k) 7→ [<,=, >]. Intuitively, every memory lo-
cation dereferenced by the first subscript at the source (a[i + 1]) is used in the subsequent
loop iteration at the sink (a[i]). Here the i-loop contributes a loop-carried true dependence
[<] between statement S1 and S2. The second subscript contributes a loop independent true

dependence [=] between S1 and S2. The third subscript contributes a loop-carried anti de-
pendence [>] between S1 and S2. The left-most non-“=” dependence is the loop-carried
true dependence contributed by the i-loop. As this is the outermost loop, this dependence is
deemed to be a level-1 loop-carried dependence from S1 to S2.

In general, a linear function of loop iterators within a subscript pair can be tested using
Multiple-Index-Variable (MIV) tests. Banerjee’s equations [20] provide a systematic MIV
test for dependences between a pair of subscripts. Wolfe et al [158] provide an algorithm to
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use these tests to hierarchically determine which dependences are valid and how these should
be combined together for each variable pair. However, these tests are expensive [70]. The
most common categories of subscript dependence tests are Single-Index-Variable (SIV) (both
source and sink are referenced by the same single loop iterator) and Zero-Index-Variable
(ZIV) tests. Simplified tests for SIV and ZIV subscripts cater to a large majority of numerical
loop nest computations and are faster [52, 70]. This is especially useful in JIT compilation
environments, which are the focus of this thesis.

Allen and Kennedy [70] prove that when a statement in a level-‘k’ loop nest is executed se-
quentially at level-k, then any re-ordering transformation to the inner loops is valid as long
as they remain inner loops relative to loop-k. As a corollary, all such inner loops can also
be parallelised. Dependence analysis of loop-nest statements provide a framework to reason
about the schedule of operations and the amount of parallelism in the loop nest. Cycle de-
tection within a built-up dependence graph of the whole loop nest will reveal the constraints
on parallelising code. If no cycles are detected, then the statements can be parallelised. By
executing outer level loops sequentially, an optimising algorithm can remove dependences at
that level in the dependence graph and attempt to break cycles within the dependence graph.
Breaking such cycles in the dependence graph allows for the execution of the remaining
inner-level loops in parallel. Further structural loop transformations like loop interchange,
loop fusion and loop fission allow code optimisation for various parameters like number of
parallel threads, memory locality and execution order.

Since the 1980s these loop optimisation techniques have been researched and incorporated
into high-performance parallelising toolchains for static compilation languages like FOR-
TRAN. Generally, numerically intensive scientific code was developed in these languages
[109]. As mentioned in Section 2.1.1, developers in various domains are now increasingly
working with dynamic scripting languages such as Python. Exploiting the use of parallel
accelerators such as GPUs can decrease execution time. However, this requires developers
to know the hardware architecture of a GPU as well as the low-level programming semantics
of CUDA / OpenCL (Section 2.3). As loop nests are a frequently occuring control structure
in code written by such non-expert developers (Section 2.4), automatic loop parallelisation
will greatly improve developer productivity. Leveraging dependence analysis enables par-
allelisation and automatic code generation for GPUs while maintaining data dependences.
This motivation underpins the work described in this thesis.

2.3 Heterogeneous Compute Architectures

Generally, heterogeneous computer architectures refer to systems that contain different kinds
of Computational Processing Elements (PEs) to perform a computational task. General pur-
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pose machines are increasingly heterogeneous [162]. ALPyNA is intended to assist non-
specialist programmers to exploit the performance available from heterogeneous platforms.

Flynn’s taxonomy [44] classifies computer architectures based on the concurrency of instruc-

tion stream execution and access to data streams. Flynn defines an instruction stream as a
sequence of intructions executed by a machine and a data stream as a sequence of data that
an instruction works on. According to this taxonomy, the most prevalent2 architectures are :

• A Single Instruction Single Data (SISD) machine executes each instruction in an in-
struction stream sequentially. The simplest form of an SISD executes instructions in
the same order as the instruction stream is read (in-order). Performance due to mem-
ory access performance can be improved by instruction pipelining and out-of-order

execution of instruction sequences.

• A Single Instruction Multiple Data (SIMD) machine executes each instruction in an in-
struction stream and concurrently executes that operation across multiple data points.
SIMD machines are good at exploiting Data Level Parallelism (DLP). Vector exten-
sions like SSE/AVX [86] and ARM NEON [11] on CPUs are examples of SIMD exe-
cution.

• A Multiple Instruction Multiple Data (MIMD) machine executes independent instruc-

tion streams and data streams concurrently. MIMD machines are suitable for execution
of independent instruction streams in parallel. Data access to the same location from
multiple instruction streams tend to degrade performance due to data synchronisation
mechanisms. Modern multi-core CPUs (e.g. Intel Core–i5, AMD Ryzen Threadripper,
Qualcomm Snapdragon, Intel Xeon Phi) are examples of MIMD machines. MIMD
mahines, while being the most general case in Flynn’s taxonomy are difficult to scale
due to the complexity of data synchronisation between cores.

Single Instruction Multiple Threads (SIMT) Typical SIMD extensions to CPUs apply
a single instruction to multiple data lanes concurrently. NVIDIA introduced the SIMT model
[100] for their G80 microarchitecture. A SIMT machine is specially designed to exploit Data
Level Parallelism (DLP) by applying an instruction to multiple threads that are executed
simultaneously. Unlike a SIMD machine where a single instruction is applied to parallel
lanes of a vectorised logical unit, in the SIMT model, each thread is executed on a single
PE. If there are more threads than SIMT cores, these are executed as batches of threads by a
hardware scheduler and time-sliced.

Heterogeneous computer architectures use a combination of a general purpose CPU and
specialised compute accelerators. While heterogeneous systems come in a variety of forms,

2No practical use has been envisaged for a fourth machine type Multiple Instruction Single Data (MISD)
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this thesis is focussed on JIT compilation for CPU–GPU architectures. Figure 2.7 shows a
simplified view of a heterogeneous system with a multicore CPU and a discrete GPU.

Modern general purpose CPUs have three cache levels. Each core in a multicore CPU has
its own L1 and L2 caches. All these cores in turn share access to an L3 cache to speed up
memory access to main memory.

A discrete GPU communicates and transfers data from the main memory (DDR RAM)
through the PCIe bus to its own global memory (usually GDDR RAM). Heterogeneous sys-
tems that combine a CPU with integrated GPUs on the same System-on-Chip (SoC) [37,43]
eliminate data transfer overheads by sharing main memory RAM. Main memory is reserved
for use by the integrated GPU and data is transferred using a memory-to-memory transfer.
The hardware architecture of a GPU is discussed in Section 2.3.1.

2.3.1 GPU hardware execution model

GPU hardware was originally designed to accelerate for the manipulation and rendering of
images in memory. Modern graphics processing algorithms perform computation on hun-
dreds of thousands of pixels in parallel. This stems from the nature of graphics workloads
that have to compute and output images at the rate of 24–100 Frames per Second (FPS). A
GPU device typically operates at lower frequencies compared to a CPU, but performs many
computations in parallel. These performance characteristics make GPUs an attractive com-
putational device not just for graphical applications but also for data parallel general purpose
applications.

As the evaluation of the work in this thesis is done on NVIDIA GPUs, NVIDIA and CUDA
terminology are employed to describe technical GPU terms. The basic compute unit of an
NVIDIA GPU is a SIMT processor called a CUDA core. A group of such SIMT processors
are grouped together to form a Streaming Multiprocessor (SM). A GPU can scale up the
number of threads executed in parallel by adding SM units.

Parallel compute The GPU computational architecture is markedly different to that of
a CPU. Consider the simplified GPU architecture shown in Figure 2.7. Lindholm et al [85]
describe the basic architecture that is used in almost all modern GPUs. An NVIDIA GPU
consists of a number of parallel compute multiprocessors named Streaming Multiprocessors
(SMs). Each SM consists of a large number of compute PEs. NVIDIA calls these compu-
tational PEs CUDA cores. Each CUDA core executes a single thread at a time and has its
own Program Counter (PC) and register set. Unlike traditional CPUs, threads are executed
in parallel in batches known as warps (Wilt [157]). AMD uses the term wavefront [68] for
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Figure 2.7: Simplified block diagram of a heterogeneous system with a CPU and a discrete
GPU. The discrete GPU is connected to the host device through a PCIe bus.

their GPUs. In each warp, the threads executed belong to the same thread–block (Section
2.3.2).

Each warp executes the same instruction of a compiled GPU kernel per time-cycle in lock-
step. To allow for control flow divergence between threads, a mask register is used to deter-
mine which threads have taken a branch. Every branch is evaluated for each thread in a warp
and the mask register is used to conditionally enable instructions of a branch if that branch
was taken in the corresponding thread.

Warps are scheduled to execute by warp schedulers. An SM may have multiple warp sched-
ulers depending on how many physical CUDA cores it contains. If the number of threads
in a thread block (Section 2.3.2) exceed the size of a warp, the hardware scheduler parti-
tions the threads into warps. The threads in a warp are ordered in increasing order of their
thread-id enumeration. The scheduler may swap the execution of a warp with another warp
either from the same thread-block or from a different one altogether in a SIMT manner.
Overlapping execution of warps in this manner is done to hide memory latency.

Memory hierarchy A discrete GPU is generally connected to the CPU in a heteroge-
neous system over the PCIe bus [7, 101]. Such GPUs will have access to its own dedicated
memory accessible by every SM compute unit. Graphics memory devices (GDDR RAM)
are optimised for high bandwidth applications.

Global memory is accessed through an L2 cache that is shared across all SM units within a
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Listing 2.3: Matrix Addition in C
void MatAdd( float **a, float **b , float **c, int m, int n)
{

for( i=0 ; i < m ; i++ ) {
for( j=0 ; j < n ; j++ ) {

c[i][j] = a[i][j] + b[i][j];
}

}
}

Listing 2.4: Matrix addition example as a CUDA GPU kernel written in CUDA–C
__global__ void MatAdd( float **a, float **b , float **c , int m, int n)
{

int i = blockIdx.y * blockDim.y + threadIdx.y ;
int j = blockIdx.x * blockDim.x + threadIdx.x ;

if( i < m && j < n )
c[i][j] = a[i][j] + b[i][j];

}

GPU. Depending on the design of the GPU microarchitecture, a SIMT processor might have
its own L1 cache or it might share its L1 cache with another SIMT processor within the same
SM.

2.3.2 GPU Programming Model

Programming a GPU using CUDA or OpenCL comprises writing a host program that runs
on the CPU and compute kernels that execute on accelerator devices like a GPU. The host
manages the program work-flow and the accelerator resources. Compute kernels are written
in a C-like low-level language. Such kernels generally make use of parallel idioms to locally
dereference the execution context and to synchronise between parallel threads. These are
usually implemented as compiler intrisics.

Kernel Programming Model

Parallel computation on the GPU is expressed as a data parallel computation kernel. In-
stances of a GPU kernel are executed in parallel threads. These parallel threads are mapped
to an N–dimensional computational plane. In practice, GPUs are limited to three dimensions.

Listing 2.3 shows a function written in C that sequentially computes the addition of two
matrices. A nested for-loop iterates over each element of input matrices and calculates
each element of the output matrix. Listing 2.4 shows a CUDA kernel implementation of
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Figure 2.8: Thread hierarchy in CUDA is divided into a two-tier hierarchy of grids and
thread-blocks. These are represented as vectors of up to three dimensions (x,y,z).

the same computation. The kernel is written in CUDA-C and represents a single execution
instance of the sequential loop nest in Listing 2.3.

Each element of the output matrix is computed by a unique thread. Threads are arranged into
a two-tier hierarchical schema of grids and thread–blocks. A thread-block is comprised of
an N–dimensional group of threads. Resource constraints of the actual SM unit dictate a
maximum overall number of threads that can be executed on it. This varies between GPU
architectures. Multiple thread– blocks of a homogenous size then make up a grid.

Figure 2.8 shows a 3–dimensional execution space denoted by its thread hierarchy tuple
(grid), (thread − block) > 7→ (8, 8, 5), (8, 8, 4). The unique thread context executing a
kernel instance is the unique combination of thread–ids along each dimension. A thread–
id along any particular dimension can be dereferenced in each thread using (blockidaxis ∗
blocksizeaxis + threadid) semantics. A thread-block is executed together on the same SM
unit. This allows threads within a thread–block to access shared memory and use synchro-
nisation primitives between them. However, threads in different thread-blocks cannot share
memory.
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Figure 2.9: CUDA work-flow between host and accelerator device.

Host Programming Model

CUDA kernels are compiled, setup and managed from the host device in a master–slave

configuration. An example of such a setup would be a host CPU connected to a GPU device
as shown in Figure 2.9. A program is initiated on the host. Memory arrays are allocated on
the host and transferred by the host to the accelerator device.

Computational kernels written in CUDA are compiled to machine code targetted at the GPU
device. In the CUDA and OpenCL programming models, there are two types of compilation
processes. An online compiler generates machine code during the execution of the host
program on host device. Unlike JIT compilers, this is only done when the host program
explicitly invokes the compilation of a kernel. The OpenCL framework allows kernels to be
compiled ahead-of-time by an offline compiler and invoked at runtime by the host program.
In CUDA, such a mechanism is enforced by dynamically linking to a shared library.

The host program dispatches a compiled kernel to the accelerator device with its correspond-
ing thread hierarchy (Section 2.3.2). Kernel computation on the GPU is executed asyn-
chronously. If multiple kernels are invoked, they are queued for execution in the same order
as they are invoked. After the kernel is executed on the GPU, the output data arrays are
transferred back to the host. This programming model selectively accelerates data-parallel
parts of the program on a GPU device while executing sequential code on the host CPU.
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2.4 Importance of Loop Parallelisation

The majority of the execution time of many programs is spent executing loops (e.g. Ardö
et al [10]). Widespread use of loops (particularly nested loops) as control-flow contructs in
code point to their suitability for optimisation. This section shows that programmers write
Python code in a manner amenable to loop dependence analysis and parallelisation.

Figure 2.10: Histogram showing number of for loops per notebook in a sample of end-user
code

To study the potential impact on developer productivity, a large corpus of Jupyter notebooks,
downloaded from github by Rule et al [125], is studied. The whole corpus contains over
1.25 million Jupyter notebooks. comprising Python code snippets. Of these, 713745 could
be parsed using a Python 3 parser (the rest were written in Python 2). This parser is written
using Python’s ast module. The ast Python module allows for the sub-classing of each
node within the Python AST. The analysed code samples are representative of developer
programming style, perhaps skewed to the scientific domain.

Each notebook is parsed to obtain the number of distinct for loops in each notebook. The
depth of each loop nest is also identified. The depth of a loop nest provides the possible
number of loops which may be parallelised. Figure 2.10 shows that approximately half the
notebooks had loop nests within them. Figure 2.11 shows the maximum nesting depth that is
found in each Jupyter notebook, and the median depth is 1 while the maximum depth is 14.

This motivating study shows the potential to widely apply loop parallelisation techniques in
end-user Python code. Automatic parallelisation and appropriate JIT compilation of loop
nests provide a transparent method of accelerating code in a heterogeneous environment.
Chapter 4 describes the design of ALPyNA which addresses automatic parallelisation of
such loop nests.
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Figure 2.11: Histogram showing the maximum for loop nesting depth per notebook

2.5 Summary

This chapter has presented the theory and terminology required to understand the rest of the
material in this thesis. It brings together disparate areas of compiler and runtime technologies
and serves as a foundation for the research.

Section 2.1 introduced the execution of a managed dynamic language in a VM and speeding
up of such code using various JIT compilation techniques. In the context of Python, the run-
time features of the CPython VM is explored. The Numba compiler which uses developer
insight to accelerate specific parts of code within a program is introduced. The Numba com-
piler is used to expose the underlying GPU CUDA framework to the ALPyNA code generator
as well as to JIT compile and execute CPU and GPU variants of hot code fragments.

The theory and terminology used for dependence analysis of loop nests and the basis of paral-
lelisation is introduced in Section 2.2. These have been used in compilers for static languages
for many years. Applying this framework to a dynamic runtime environment has different
challenges and opportunities as we show in the design of ALPyNA (Chapter 4). Section 2.3
introduced the core ideas and the programming model of GPU programming. Understand-
ing the SIMT parallel hardware architecture and the CUDA based execution model of data
parallel programs is necessary to exploit the performance available from modern GPUs.

This chapter ends with a study analysing the popularity of loop nests in the programming
styles of various developers. We show that roughly half the code fragments of a very large
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corpus of publicly available Python notebooks contain code that can be targetted by the
contributions in this thesis. The next chapter takes a critical look at the state-of-the-art tech-
nologies as used in this thesis.
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Chapter 3

Literature Survey

The proliferation of heterogeneous compute architectures has led to a varied set of tools
and approaches to enable programmers to harness them. Developing performant code for
accelerators remains complex and presents a steep learning curve, especially for non-expert
programmers. The rising popularity of managed languages and runtimes such as Python
(Bissyandé et al [25]) and libraries (Virtanen et al [153]) for compute intensive calculations
points to the need for easy programmability of heterogeneous architectures. The primary
aim of this dissertation is to aid non-expert programmers to access accelerator performance.
This chapter discusses current research into heterogeneous programming and the various
technologies involved to automatically accelerate code in dynamic languages.

This dissertation primarily targets acceleration of loop nests in Python on CPU–GPU sys-
tems. Section 3.1 discusses alternate VMs and techniques used to speed-up Python applica-
tions. Section 3.2 discusses directive based JIT compilation and bindings to heterogeneous
programming languages in dynamic languages. Section 3.3 introduces the theory behind
loop parallelisation and explores contemporary loop parallelisation frameworks in runtimes
and JIT compilers for heterogeneous devices. Section 3.4 outlines functional programming
and acceleration of algorithmic skeletons programming on GPU hardware. Section 3.5 dis-
cusses current research into parallelising Domain Specific Languages (DSLs) that enable
parallelisation. These enable expert programmers working with high level abstractions to
guide compiler optimisation. Section 3.6 introduces various Intermediate Representations
(IR) where parallelism is built in by design. Section 3.7 describes various analytical and
machine-learning approaches to predicting the optimal device, load-balancing and deriving
the cost of executing computation in a heterogeneous environment. Finally Section 3.8 con-
cludes and summarises this chapter.

To provide a systematic overview of all the work that is discussed in this chapter, we have
characterised each work based on the primary language targeted, the type system, compi-
lation type, cost awareness, the level of manual intervention required and the accelerator
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System Language Type System
Compilation

Type
Cost

Awareness
Programmer
Intervention

Parallelism
Resolution

Target
Devices

Virtual Machines (Section 3.1)

PyPy [10, 27, 94, 110] Python Dynamic JIT
Hot path
detection Automatic Runtime CPU–SIMD

Pyston [96] Python Dynamic JIT
Hot path
detection Automatic Runtime CPU–SIMD

Cython [23] Python Static Static – Explicit Compile time CPU–SIMD

Jython [67] Python Dynamic JIT
Hot path
detection Automatic Runtime CPU–SIMD

Truffle [161]
Ruby, R,
Python Dynamic JIT – Automatic Runtime

CPU, GPU,
FPGA

Library bindings and Directive based JIT acceleration (Section 3.2)
Numba [78] Python Static / Dynamic JIT – Explicit Compile time CPU, GPU
PyCUDA /
PyOpenCL [75] Python Static JIT – Explicit Compile time CPU, GPU

Jibaja et al [64] JavaScript Dynamic JIT – Explicit Runtime CPU–SIMD
Loop parallelisation (Section 3.3)

Megaguards [115] Python Dynamic JIT – Automatic Runtime CPU, GPU
Three Fingered Jack
TFJ [127, 128] Python Dynamic JIT – Automatic Compile time FPGA

ALPyNA [60, 61] Python Dynamic JIT Analytical Automatic Runtime CPU, GPU
Paragon [126] C/C++ Static Static – Automatic Runtime GPU
Wang et al [156] C/C++ Static Static – Automatic Runtime GPU
Leung et al [82] Java Static JIT Analytical Automatic Runtime GPU

Tornado [36, 46] Java Static JIT – Explicit Runtime
CPU, GPU,
FPGA

Apollo [29, 140] LLVM IR Static JIT Profiling Automatic Runtime CPU
Algorithmic skeletons ( Section 3.4)

Copperhead [31]) Python Dynamic JIT – Explicit Compile time GPU
Parakeet [124] Python Dynamic JIT – Explicit Compile time GPU
Ishizaki et al [59] Java Streams Static JIT – Implicit Runtime GPU
Ikra [92] Ruby Dynamic JIT – Explicit Compile time GPU
Fumero et al [48, 49] Java Static JIT – Explicit Compile time CPU, GPU
Lime compiler [39]) Java Static JIT – Explicit Compile time CPU, GPU

Dandelion [121] .NET LINQ Static JIT – Explicit Compile time
CPU, GPU,
distributed

RiverTrail [56] JavaScript Dynamic JIT – Explicit Compile time CPU, GPU
ParallelJS [154] JavaScript Dynamic JIT – Explicit Runtime CPU, GPU

Fumero et al [47] JavaScript Dynamic JIT
Hot path
detection Implicit Runtime CPU, GPU

Lift [136, 137] Lift Static Static – Implicit Compile time CPU, GPU
Futhark [55] Futhark Static Static – Implicit Compile time CPU, GPU
LambdaJIT [89]) C++ Static JIT – Automatic Compile time CPU, GPU

Embedded DSL (Section 3.5)
SEJITS /
Asp [32, 69] Python (Host) Dynamic JIT – Semi-auto Compile time CPU, GPU

Delite [138] Scala (Host) Static JIT – Semi-auto Runtime CPU, GPU

SYCL [117, 118] C++ (Host) Static Static – Explicit Compile time
CPU, GPU,
FPGA

LooPy [74] Python (Host) Dynamic JIT – Semi-auto Compile time CPU, GPU
Intermediate Representation (IR) (Section 3.6)

SPIR-V [72] SPIR-V IR Static Static / JIT – Semi-auto Compile time
CPU, GPU,
FPGA

INSPIRE [66] INSPIRE IR Static Static / JIT – Semi-auto Compile time CPU, GPU
HSAIL [6] HSA IR Static Static / JIT – Semi-auto Compile time CPU, GPU

Cost Models (Section 3.7)
Armih et al [12, 13] C/C++ Static Static Analytical Automatic Compile time CPU, GPU
AJITPar [91] Racket Dynamic JIT Analytical Automatic Runtime CPU
MWP–CWP [57, 130] – Static Static / JIT Analytical Automatic Runtime GPU
Chikin [34, 35] C/C++ Static Static Analytical Automatic Runtime GPU

3DPP [163]
CUDA,
OpenCL Static Static Analytical Automatic Compile time GPU

Kennedy et al [71] FORTRAN Static Static Analytical Automatic Compile time CPU

Wang et al [155] OpenCL Static Static
Machine
learning Automatic Runtime CPU, GPU

XAPP [9] – Static Static
Machine
learning Automatic Runtime CPU, GPU

Wu et al [160] – Static Static
Machine
learning Automatic Runtime GPU

Table 3.1: Overview of heterogenous compilation technologies
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devices supported. This characterisation is presented in Table 3.1. Only accelerator devices
connected to a host device by a hardware bus are taken into consideration and hence dis-
tributed computational models are not discussed. The level of intervention required from the
programmer to identify parallelism and exploit acceleration is based on the classification of
parallel tools made by Vandierendonck and Mens [149], as follows :

• Explicit parallelisation : The programmer explicitly states the code constructs that
are targeted for analysis and optimisation.

• Implicit parallelisation : The features of constructs used within a tool, framework or
language can be implicitly targeted to analyse for parallelism.

• Automatic parallelisation : Parallel processing is extracted from sequential state-
ments in the source language.

• Semi-automatic parallelisation : Tools guide an expert programmer to aid paralleli-
sation and optimisation.

‘Parallelism resolution’ indicates whether the decision to use a target device is taken at ‘com-

pile time’ or ‘runtime’. A compile time resolution does not necessarily mean that the com-
pilation of a parallel kernel happens at compile time but rather that the decision was taken
ahead of time. The term ‘static’ is overloaded when used to classify the systems in Table
3.1. When referring to typing systems, programming languages may be statically or dynam-
ically typed. When referring to compilation, these systems may be statically compiled or JIT
compiled.

3.1 Python JIT compilation frameworks

The most popular implementation of Python is the CPython reference implementation (Sec-
tion 2.1.1). However, CPython only uses an interpreter. PyPy [119] is an alternative VM for
the execution of Python programs with an emphasis on performance. Bolz et al [27] first pro-
posed the use of a tracing JIT compiler to speed up the PyPy implementation of Python. A
light-weight counter keeps track of the number of times a backward edge is taken in a loop.
When a hot-loop is identified, the interpreter traces and memoises all the instructions that
are executed in an instance of the loop. Guard conditions are placed at all locations where
control-flow may diverge. Crucially the tracing JIT compiler traces the bytecode interpreter
and not the actual program itself. To ensure that the user program rather than the interpreter
is being traced, the interpreter is provided with hints about when a hot-loop has occurred in
the user program. The traced assembly instructions are optimised and executed until the loop
terminates or a guard condition has been violated.
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Meier et al [94] have proposed various solutions such as fine-grained locking, and transac-
tional memory to remove the limitation of the GIL in PyPy. Loop optimisations within the
PyPy tracing JIT have been proposed by Ardö et al [10]. These optimisations centre around
loop-invariant code motion being applied with the clever use of loop-peeling in the JIT trace.
When combined with other loop optimisations such as redundant guard condition removal
and common subexpression elimination, significant improvement is shown in small loop
bodies. Plangger et al [110] implemented loop vectorisation by unrolling loops, tracing the
dependences between instructions and searching for groups of instructions to combine into
SIMD instructions on the target machine. This produced a speed-up of between 0.96x–2.1x
over the non-vector version of the benchmarks.

Pyston (Modzelewski et al [96]) is a performance oriented Python VM initially developed
by DropBox. It uses a two-tier JIT compilation process to execute hot paths. A two-tier JIT
compiler keeps track of the number of times a hot-path is executed and uses two thresholds to
trigger each compilation phase. A baseline JIT compilation phase (BJIT) is executed when
a hot-path detection counter crosses a lower threshold. Pyston’s BJIT compiler is a lightly
optimising compiler that is strongly coupled to the interpreter. In this phase all objects are
boxed as Python objects and no type speculation is performed for the code. During execution
by the BJIT compiler, type information is gathered for each object. When the hot-path
detection counter crosses the higher threshold, the types inferred by the BJIT compiler are
passed on to an LLVM [79] based JIT compiler. Many variants of code are generated with
each type gathered from the previous BJIT compilation phase. A guard condition violation
in this tier will check for another variant that was compiled and cached. If such a variant is
not available, execution will fall back to the BJIT execution variant. As LLVM has a large
number of optimisation passes and the IR generated is typed, aggressive optimisation can be
performed. The two tier JIT compilation process enables the VM to utilise fast compilation
for shorter execution paths while performing heavy optimisations on the most frequently
executed hot-paths.

Cython (Behnel et al [23]) is a typed language extension to Python. Cython compiles Python
code annotated with C-types to C. The C code is further compiled and linked against the
Python runtime. Cython performs type evaluation on each object in a function from a set of
types initially declared for some of the variables. If this is not possible, object types fall back
to dynamic Python types. The compiled code integrates the C and Python runtimes natively
within the language constructs itself. Runtime calls between the C-runtime and Python are
integrated into the language itself and requires no manual intervention from the program-
mer. Typical loop computational patterns are recognised and converted to their equivalent
C/C++ versions after being aggressively optimised if the type system allows it. Scientific
and numeric computation libraries such as SciPy, pandas and scikit-learn [108] use Cython
for performance enhancement. If the programmer explicitly releases the GIL and guaran-
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tees that no boxed Python object is accessed within these regions of code, multi-core CPU
parallel code is generated using OpenMP.

Python has also been implemented using the VMs of other languages. Jython (Juneau et

al [67]) is an implementation of Python that uses the Java VM. It can extend the Python
runtime with either the Java or the C runtimes using the Java FFI. As the Python interpreter
is written in Java, the JVM acts as a meta-interpreter and accelerates the hotpaths within the
Python interpreter. The underlying Java VM is truly multi-threaded. This is an advantage
over CPython where multi-threaded performance is limited by the GIL. The underlying Java
VM also has the advantage of using the more sophisticated garbage collection algorithms
that come as standard with the JVM.

Building optimising managed runtimes for dynamic languages is complicated and error
prone. The OpenJDK project provides a rich feature set to programmers developing language
VMs. Truffle (Würthinger et al [161]) optimises interpreter execution by partial evaluation
of the program AST. When a hot path is identified within the interpreter, Truffle partially
specialises the AST to reduce the overhead of execution. Truffle is paired with Graal [40],
an optimising JIT compiler. Graal transforms the partially specialised code to a specialised
IR. Truffle annotates nodes that enable control divergence with their execution probabilities
and frequency to tailor the number of compiler optimisation passes on-demand. Truffle and
Graal are widely used as a framework to accelerate a number of dynamic languages such as
Ruby, R, JavaScript and Python.

Limitations Tracing JIT compilers such as PyPy, Pyston and Jython accelerate dynamic
languages by tracing the binary instructions that have already been executed on the CPU and
optimising the hot paths identified. However, the parallel SIMT execution model (Section
2.3) of GPUs requires computation to be explicitly written with parallel thread semantics.
Implementing a tracing JIT in the presence of architecturally different devices such as GPUs
is difficult due to the complexity of translating a binary trace of CPU instructions to the
SIMT model of GPUs. Other approaches such as Cython require the programmer to utilise
C-types to compile code statically. The compiler can only parallelise simple loops targeting
multi-core CPUs and does not take into consideration optimisation opportunities that arise
from runtime dependence analysis.

3.2 Library bindings and Directive based JIT acceler-

ation

Numba (Lam et al [78]) is a JIT compiler for Python. Numba compiles and executes Python
code specifically identified by the programmer using decorator syntax. Unlike Copperhead
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and Parakeet (Section 3.4), which concentrate on accelerating higher order functions, Numba
is capable of compiling a larger subset of a Python program. Numba uses the LLVM compiler
toolchain to compile code targeting the CPU. Numba can automatically deduce the types
required to compile a function at runtime or it can defer to the programmer to compile a
function with its types provided. It can also compile and vectorise ufuncs 1.

Listing 3.1: Numba JIT compilation of
saxpy (Section 5.1) targeting the CPU
@jit(’(float32[:], float32[:],

float32[:], float32, int32)’)

def saxpy(out, a, b, alpha,lim) :

for i in range(0,lim):

out[i] = alpha * a[i] + b[i]

Listing 3.2: Numba JIT compilation of
saxpy (Section 5.1) targeting the GPU
@cuda.jit(’(float32[:],

float32[:], float32[:],

float32, int32)’)

def saxpy(out, a, b, alpha,lim) :

tx = cuda.threadIdx.x

bx = cuda.blockIdx.x

bw = cuda.blockDim.x

x = (bw * bx) + tx

if x >= lim :

return

out[x] = alpha * a[x] + b[x]

Numba also supports GPU compute capabilities. Numba enables the exploitation of GPUs
by exposing GPU thread and synchronisation primitives to the programmer. This enables
programmers to write GPU kernels in idiomatic CUDA. Therefore programmers must be
aware of the low level SIMT programming model. Listing 3.1 and 3.2 show examples using
JIT compilation directives to compile the saxpy benchmark targeting the CPU and GPU
respectively. ALPyNA uses the Numba compiler tool-chain to JIT compile and execute the
code generated at runtime for the CPU and GPU targets (Section 4.4). Further details about
Numba are explained in Section 2.1.4.

PyCUDA and PyOpenCL (Klöckner et al [75]) provide a thin abstraction layer for Python
programmers to execute code on accelerators such as GPUs. The compilation, scheduling of
kernels and data transfer can be finely controlled in the host using Python syntax. The kernels
themselves are written in CUDA and OpenCL, and passed as strings to the online compiler.
The numerical arrays used with these kernels are numpy arrays, i.e. typed arrays with data
stored in contiguous aligned memory locations. This makes it easier to inter-operate with
the CUDA and OpenCL runtimes and to transfer memory to a GPU without the need for
marshalling. Listing 3.3 shows the saxpy kernel passed to the CUDA compiler as a C-string
and called from the Python interpreter.

1A Python ufunc (Universal Function) executes the body of the computation on Numpy ndarrays (n-
dimensional arrays) in an element-by-element manner.
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Listing 3.3: CUDA implementation of saxpy in PyCUDA

# out,a,b are numpy arrays

a_gpu = cuda.mem_alloc(a.nbytes)

b_gpu = cuda.mem_alloc(b.nbytes)

out_gpu = cuda.mem_alloc(out.nbytes)

cuda.memcpy_htod(a_gpu,a)

cuda.memcpy_htod(b_gpu,b)

cuda.memcpy_htod(out_gpu,out)

mod = cuda.SourceModule("""

__global__ void saxpy(float *out, float *a, float *b,

float alpha, int size)

{

int tid = blockIdx.x * blockDim.x + threadIdx.x ;

if( tid >= size )

return ;

out[tid] = alpha * a[tid] + b[tid];

}

""")

func = mode.get_function(saxpy)

func(out_gpu,a_gpu,b_gpu,alpha, a.size),

block=blk_size,thread_block_size=tblk_size)

cuda.memcpy_dtoh(out, out_gpu)

Jibaja et al [64] proposed new SIMD vector data types in JavaScript. Code is type specialised
at runtime and SIMD method calls on these data types are speculatively called with a guard
condition for the deoptimisation case. Frequently executed code is then inlined aggressively.
These SIMD types are implemented for use within the SpiderMonkey and V8, the JavaScript
engines of the Firefox and Chromium browsers respectively.

Limitations Although low level bindings maintain most of the low-level flexibility of
programming an accelerator, programming such devices is intricate and error prone and
expert knowledge of the underlying hardware is required. These directive based compiler
approaches also require type annotations although the host language is dynamically typed.

3.3 Loop parallelisation

Automatic loop parallelisation seeks to extract and exploit parallelism within loop nests
while maintaining all valid schedules of statement execution as intended by the program-
mer. Dependence analysis is done by expressing the memory load–store access patterns in
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a loop nest. In the case of arrays, memory access patterns that are linear relationships of the
loop nest iterators are classified as Single-Index-Variable (SIV), Zero-Index-Variable (ZIV),
Multiple-Index-Variable (MIV) or non-linear (Section 2.2). Such tests were popularised by
Wolfe et al [158], Banerjee et al [20] and Pugh [114]. Allen and Kennedy [70] pioneered
the notion of parallelising loop nests by detecting cycles in a dependence graph and mapping
them to the loops causing these dependences.

The Polyhedral model [21,106] represents the loop domain ranges and dependences between
statements in a compact matrix like structure. The abstraction is based on the representation
of all memory accesses as a polytope. Loop transformations can be succinctly explored
within the polyhedral model where the domain ranges are known. Well known polyhedral
tools to analyse dependences and optimise loop nests include GRAPHITE (Pop et al [111])
for GCC and Polly (Grosser et al [53]) for the LLVM compiler.

3.3.1 Loop parallelisation in managed language runtimes

Loop parallelism for GPUs and other accelerators has been researched in the static compilers
extensively. Their use in dynamic languages and JIT compilation environments presents both
difficulties and opportunities. Loop parallelisation and compilation of GPU kernels requires
a type system supported by accelerators. This is only available at runtime for dynamic lan-
guages. However, dynamic instrospection and runtime dependence resolution in managed
languages allows greater parallelisation opportunities.

Megaguards (Qunaibit et al [115]) is a loop parallelisation framework implemented on ZipPy
[164]. ZipPy is a Python3 implementation built on top of a Java Virtual Machine which uses
Graal and Truffle (Würthinger et al [161]) as the JIT compilation and runtime optimisation
framework. Megaguards treats a loop nest as a static region with no mis-speculations. To
ensure the correctness of this approach, Megaguards attempts to lift and combine all type
related guard conditions outside the loop nest. If the type-stability test fails, the loop nest
is executed in the interpreter. However, if type-stability tests and bounds checks for each
array succeed within the scope of the loop nest, these checks are lifted out of the loop nest
body. Bounds checks can only be checked for linear indexing of array elements. Megaguards
performs inter-procedural analysis on each function call within a loop nest and compiles a
type specialised variant for each function. When the safety of lifting these guard conditions
is ascertained, the loop nest is analysed for dependences. If no cross-iteration dependences
are detected, OpenCL kernels representing the loop nest are generated to execute on a GPU.
If cross-iteration dependences are detected, sequential code is executed on the CPU using
Graal. Dependence testing is done leveraging Polyhedral Extraction Tool (PET) [152]. Alias
analysis is performed at runtime on array references to ensure that dependence testing using
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PET is not erroneous. By not parallelising loop nests with cross-iteration dependences, op-
portunities to optimise loop nests where the outer loop carries a dependence will be missed.

Three Fingered Jack – TFJ (Sheffield et al [127, 128]) is a loop parallelisation framework
for Python. It is an embedded DSL supporting a subset of the Python language constructs
written as loop nests. It is not a whole program compiler and uses decorator syntax on user
defined functions to optimise and generate code. TFJ supports a simple type system on loop
nests with array semantics and no control flow divergence. At compile time, dependence
analysis is performed on a TFJ decorated function with loop nests and transformed into an
XML based intermediate representation. A greedy approach is taken towards parallelisation
as popularised by Allen and Kennedy [70]. The algorithm is tuned towards reordering loops
so that the outer loop has a large iteration domain while trying to maintain unit-stride memory
access. At runtime, function arguments are checked again. If a compiled variant is already
cached it is executed. However, if a valid combination is not in the code cache, it is compiled
with the correct types. Otherwise execution falls back onto the interpreter for unsupported
type constructs. For CPU variants, C++ code using SIMD vector intrinsics are generated.
TFJ can also perform hardware synthesis to execute code on an FPGA.

Paragon (Samadi et al [126]) speculatively generates parallel CUDA GPU kernels from po-
tentially parallelisable loop nests. Such loop nests are identified by profiling before com-
piling the code. For each unit of work that is potentially parallelisable, Paragon maintains
checkpoints to be able to roll back computations if the guard conditions in the parallel com-
putational variant are violated. Correctness is checked by maintaining a log of load and store
accesses for each memory location accessed in parallel on the GPU. At the end of kernel
execution, a supplementary kernel checks each memory location in the log. More than one
store operation or a store and load operation to any memory location triggers the conflict
flag indicating that the sequential execution of the loop nest will be chosen.

Wang et al [156] improve upon the speculative loop parallelisation approach of Paragon by
profiling loop execution and being more sophisticated in detection of dependences. Static
analysis separates loops that are definitely sequential or parallel from loops that are poten-
tially parallel but conservatively marked as sequential. The code is profiled to obtain a level
of confidence regarding such loops. Parallel kernels are generated to execute on a GPU
along with guard conditions. At runtime, both the parallel and sequential program are simul-
taneously executed. The computational results from the variant that successfully completes
the execution first is utilised. Dependence checking is done in-place during execution to
check for dependence violation of the speculatively parallelised loop. A dependence viola-
tion triggers the killing of the parallel execution variant and the result from the sequential
variant is committed. This system is more precise in the detection of dependence violations
than Paragon by checking the order of memory accesses as opposed to just naively checking
whether more than one access for a memory location has occurred. Unlike Paragon, par-
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allelisation is permitted even in the presence of cross iteration dependences as long as the
dependence constraint is not violated. It is also less memory intensive as it does not maintain
a log of memory locations that could cause potential dependence violations.

JikesRVM [4] is a managed Java runtime with a two tier JIT compilation process. It does
not have an interpreter stage and compiles all code. Leung et al [82] implement automatic
loop parallelisation in the second JIT compilation stage. The second stage targets code that
is computationally heavy. Parallelism that is identified in such a loop nest is used to generate
the driving code on the host CPU and parallel kernels on the GPU. A simple parameterised
cost model based on profiling is proposed to analyse the cost of offloading computation to
a GPU (discussed further in Section 3.7). Loops within a loop nest are identified as being
CPU bound, implicitly GPU bound or explicitly GPU bound. Loops identified as implicit
GPU loops are parallelised as threads while explicit GPU loops are executed sequentially
within a kernel. Implicit GPU loop nests are constrained to be perfect loop nests. Any loop
carried dependences between instructions in a loop body are not parallelised even if the de-
pendence is carried by an outer loop. As dependence analysis is performed on the byte code
representation of a loop nest, control flow has to be recovered from the byte code before
the analysis stage to correctly generate GPU kernels. Runtime array bounds verification is
performed before offloading computation to ensure no exceptions are raised by GPU execu-
tion. All array subscripts are constrained to be of the ZIV or SIV form (Section 2.2). Any
bounds check violation triggers the execution of the loop nest computation on the CPU. The
limitation of parallelising only perfectly nested loops with no loop carried dependences may
hinder loop parallelisation opportunities for execution on GPUs.

Listing 3.4: Tornado JIT compilation of saxpy targeting the GPU
public class Compute {

public void saxpy(int[] out, int[] a, int[] b, int alpha) {

for (@Parallel int i = 0; i < out.length; i++) {

out[i] = alpha * a[i] + b[i];

}

}

public void compute(int[] out, int[] a, int[] b, int alpha) {

TaskSchedule s = new TaskSchedule("s0")

.task("t0", this::saxpy, out, a, b, alpha)

.streamOut(out).execute();

}

}

Tornado (Clarkson et al [36]) transforms and compiles data parallel code written in Java to
execute on accelerator devices in a heterogeneous platform. The Tornado system is com-
posed of (i) an API and decorator, (ii) an optimising runtime and (iii) a JIT compiler. Pro-
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grammers identify parallel loops using the decorator syntax (@Parallel). These decora-
tors are hints to the compiler to generate parallel code if supported by the target device. The
Tornado API helps a programmer to express dependences between computational kernels as
a graph of task-nodes. Listing 3.4 shows the parallel saxpy kernel being expressed as a single
task in Tornado. Each task-node encapsulates potential data parallel code, the data used for
computation and meta data such as compiler and runtime configurations. Metadata for each
task may be manually specified by the programmer or automatically decided by the runtime.
Tornado considers a task as a basic unit of computation. At the task level, the Tornado task-
graph model is a data-flow model of computation with each task a data-parallel model. The
Tornado Runtime performs task level dependence analysis and generates the orchestration
code for each accelerator and data transfer code at runtime. To reduce data transfer over-
heads, data is maintained locally on each accelerator. The programmer explicitly transfers
output data back to the host after computation. At runtime the whole task graph is opti-
mised, redundant data transfers are removed and the execution time of the computational
critical path is optimised. After optimisation the JIT compiler is invoked for each task. and
caches compiled code for future use. The optimisation phase chooses the target accelerator to
execute a task. The JIT compiler utilises Graal [40] for dependence analysis and augments
Graal with information to generate OpenCL kernels for parallel execution. Tornado’s JIT
compiler optimises the loop structure of the explicitly parallel loop nest for each accelerator
device.

Tornado was extended by Fumero et al [45] to perform parallel reductions by decorating the
output variable of the reduction computation with the decorator @Reduce. Such a decorator
is considered as a hint to the compiler. At runtime, data flow dependencies are checked
to detect a reduction operation. A simple reduction can be detected if a store operation
happens to the same location from which a load operation occurred. Tornado then replaces
instructions within the IR representation of the loop structure. These specialised instructions
can be compiled to OpenCL implementations of parallel reduction skeletons.

Fumero et al [46] further extend Tornado by lowering a task graph into specialised byte code
that dynamically target accelerator devices. These byte codes cater to parallel execution
and data transfer semantics. The Tornado byte-code interpreter is itself interpreted in the
context of a standard Java VM. The virtualisation layer that this approach introduces makes
computation migration transparent to the user. JIT compilation is performed on demand and
compiled code is cached for later reuse. Tornado can dynamically target multiple accelera-
tor devices in a heterogeneous environment. The task graph is optimised for execution by
profiling multiple variants of each task on each device and remembering the devices selected
for a particular schedule of tasks. The Tornado VM uses a memory manager to optimise
data transfer between devices. Memory is pre-allocated on each accelerator device. While
read-only variables are safely mirrored, writable memory locations on each accelerator de-
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vice are mirrored as versioned memory spaces on the host. The correct version of memory is
committed based on which device’s output is determined to be valid by the Tornado runtime.

Apollo (Sukumaran-Rajan et al [29, 140]) is a runtime optimising polyhedral compiler. It
partially transforms source code snippets of loop nests into LLVM IR called code-bones.
During static compilation, these code-bones are characterised as linear, potentially linear
and non-linear loop nests. During execution, the Apollo runtime launches an online profiling
phase for potentially linear loop nests and linear inequalities are built up from the profiling
results to build up a speculative polyhedral model of the loop nest. At runtime, speculatively
parallelised code-bones are optimised and executed on parallel hardware. To mask the exe-
cution latency of polyhedral analysis, code generation and compilation, a sequential version
of the code is executed on the host along with a parallelised version. If any guard condi-
tions are violated, results from the parallel execution are invalidated and the results from
sequential execution are committed. The finer granularity of dependence analysis that arises
from using polyhedral analysis at the IR level spreads dependence analysis between memory
references in a single statement over multiple IR instructions. This could potentially lead
to more parallel code. However the size of code-bones over which analysis is performed
is restricted because polyhedral analysis time rises quadratically [146] over the number of
statements.

Limitations Loops are a basic computational construct in almost every imperative lan-
guage and are amenable to parallel execution. Loop parallelisation for heterogeneous ar-
chitectures in a managed runtime has the potential to provide transparent use of GPUs
to non-expert programmers. The work in this thesis takes this approach. Many current
works presented above miss optimisation opportunities while doing runtime analysis. Mega-
guards [115], Leung et al [82] parallelise only perfect loop nests and do not parallelise loops
that may contain cross iteration dependences. Also Leung et al only allow simple linear
relationships of iterators in subscript pairs. Three Fingered Jack [127, 128] does not support
control flow divergence within loop bodies. The Tornado [36, 46] system is capable of han-
dling multiple target devices. The cost model is based on heavy profiling on all available
devices. Samadi et al [126] and Wang et al [156] use speculative kernel execution on GPUs
and require post-execution correctness checking before committing the results.

3.4 Accelerating Algorithmic Skeletons

Copperhead (Catanzaro et al [31]) is a parallelising source-to-source compiler for Python. It
extracts nested parallelism from data parallel higher level functions in Python and generates
C++ CUDA code for GPU execution. It is developer directed and relies on decorator syntax
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(@cu) to parallelise Python higher-order functions such as map, zip and reduce. Listing
3.5 shows the application of the @cu directive to JIT compile the saxpy kernel for a GPU.
Nested parallel computation formed by the composition of such data parallel functions is
mapped to the thread organisation hierarchy of the GPU. The programmer can also specify
data dependences to the compiler by providing arguments within the decorator syntax. This
allows the compiler to analyse data dependences and optimise the compiled GPU kernel
code. The Copperhead compiler disallows the use of standard loop-like syntax within the
body of any kernel.

Listing 3.5: Copperhead GPU JIT compilation of saxpy
@cu

def saxpy(a, b, alpha):

return map((lambda x, y: alpha * x + y), a, b)

Parakeet (Rubinsteyn et al [124]) is another directive based JIT compiler focussing on ac-
celerating numerical Python. Similar to Copperhead, it targets higher order functions for
acceleration and generates code for CPU and GPU devices. Parakeet specialises each higher
order function call within a target code region with its types. Function calls within these
code regions are recursively specialised and type evaluation is propagated up the call chain
of the function being accelerated. In addition to this, standard compiler optimisations such
as constant folding, function in-lining and common sub-expression elimination are also em-
ployed. Parakeet also supports looping structures within the body of the function that it seeks
to compile unlike Copperhead. However, no attempt is made to parallelise any nested loops.
Parakeet compiles higher order functions directly to NVIDIA PTX rather than generating
CUDA code.

Java Streams was introduced in Java 8 to enable programmers to program using higher order
functions for computation. Ishizaki et al [59] designed a JIT compiler that targets foreach
primitives that have been explicitly parallelised by composition with the parallel primi-
tive. The computational kernel is extracted, optimised and a CUDA variant is generated and
JIT compiled. The domain size of the parallel computation is derived from the limits of the
foreach statement. Virtual methods within the objects are handled by direct or guarded
virtualisation. In direct virtualisation, the target of the virtual call is replaced by a non-virtual
method if it is determined to be loop-invariant during JIT compilation. Otherwise, runtime
profiling is used to replace the virtual method with the best non-virtual method with a guard
condition. This system does not parallelise nested calls to the parallel skeleton function and
thus could potentially miss out on opportunities for parallelism.

Ikra (Masuhara et al [92]) is a library based data-parallel extension to Ruby. The primary
data-parallel array class is the PArray class. Its class methods such as new, map and
inject are provided as algorithmic skeletons which can be executed in parallel on a GPU.
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The computational kernel is written in a restricted subset of Ruby. Ikra originally used an
offline compiler to generate GPU executable variants with a simple type inference system.
Springer et al [134] changed the original design to a JIT kernel compilation model of the
parallel methods of the PArray object. To improve performance, loops surrounding calls
to parallel methods are translated to C++ and compiled to execute on the host.

Fumero et al [48,49] implement a similar approach towards accelerating array programming
in Java. An ArrayFunction class with parallel higher order class functions is exposed
to the programmer. These functions are extended from the Java function interface to allow
composition of these methods. Auto generated code for accelerators is optimised taking
the data flow through the composition of functions into consideration. The functions to be
accelerated are optimised using Graal [40] and converted from Graal’s internal IR to OpenCL
kernels.

The Lime compiler (Dubach et al [39]) is a high level compiler that extends the Java language
with operators such as @ and ! to express higher order parallelisable functions such as map

and reduce respectively. The => operator is provided to pipeline data flow between compu-
tational kernels. The Lime compiler auto-generates OpenCL code, data transfer directives as
well as orchestration code. Dependence between kernels is represented in a task-graph repre-
sentation. A relatively simple pattern matching memory optimisation is performed to allocate
the most efficient memory type within the OpenCL memory hierarchy (global,private
or local memory).

Dandelion (Rossbach et al [121]) aims to provide a unified programming model for hetero-
geneous systems. It seeks to transparently and automatically distribute data-parallel portions
of a program to different execution devices. Programs are manually represented as a data-
flow-graph and are written in the .NET LINQ programming language. Dandelion internally
uses a multi-tiered data-flow graph representation to distribute work to each node. The top
data-flow graph layer is the cluster level and manages all the machines within the cluster. At
each machine node, the computation is further expanded to a machine level data flow graph.
Dandelion’s node level runtime then decides whether the CPU or the GPU executes the com-
putation. Dandelion handles dynamic memory allocation by converting to stack allocation
of the memory where the size of the object can be unambiguously inferred. If this cannot be
inferred, execution falls back to the CPU variant. Dandelion requires the usage of extended
types to exploit the performance of GPUs within the program representation.

RiverTrail (Herhut et al [56]) accelerates JavaScript programs on both the CPU and GPU.
Parallel computation is centred around the ParallelArray, a data structure that enables
parallelism. Well known parallel algorithmic skeletons provide a high level abstraction layer
to the programmer while transparently enabling parallel execution on multicore CPUs and
GPUs. Listing 3.6 shows the invocation of the ParallelArray map skeleton to JIT
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compile the saxpy kernel for a GPU. Type inference is done by RiverTrail to translate un-
typed JavaScript to typed OpenCL code. Other arbitrary side-effect free functions that op-
erate on each element of the parallel data structure can also be transformed into OpenCL
and compiled for execution on different devices in a heterogeneous environment. Each
ParallelArray object is immutable thus enabling optimised memory layouts during ex-
ecution. RiverTrail can also distribute computational load between a host and an accelerator
using an offload factor specified by the programmer at runtime.

Listing 3.6: RiverTrail GPU JIT compilation of saxpy
function saxpy(a,b,alpha) {

var ones = new ParallelArray(a.length,

function(i) {return 1;});

return ones.map( function(e1,e2 ) { return alpha * e1 + e2 ;}, b )

}

ParallelJS (Wang et al [154]), like RiverTrail, is a JavaScript JIT compiler that exposes a
data structure upon which programmers can apply higher order functional primitives such as
map,reduce and filter. Functions that are side-effect free and have no order restric-
tions can be parallelised. It performs type inference at runtime and propagates this to each
expression within a kernel. ParallelJS transforms code at runtime to LLVM IR. When the
type system cannot resolve all types to ones that are supported by a GPU, the higher order
functions and the kernels are compiled to a sequential CPU version and executed. ParallelJS
does not perform any cost analysis before offloading computation to the GPU.

Fumero et al [47] use the partial evaluation capabilities of the FastR implementation to
accelerate parallel algorithmic skeletons in the numerical computing language R. The FastR
[135] VM uses Truffle [161] to type specialise execution paths and Graal [40] for OpenCL
kernel compilation. Type specialisation by Truffle at the AST level before JIT compilation
removes the typical overhead of execution by an interpreter. In this system, a specialised AST
node replaces the mapply parallel skeleton function (i.e. a map function) which transforms
the type specialised execution path to an OpenCL kernel. The assumption that any execution
order is permitted is exploited to execute the kernel in parallel on a GPU. In the event of
control flow divergence, the hot path is type specialised, optimised and compiled. To model
the deoptimisation, generated OpenCL kernels set a guard violation flag. At the end of kernel
execution on the GPU, the flag is checked before committing any results. A guard violation
will result in the code being re-executed in the interpreter.

Automatically optimising an algorithm for a particular compute device such as a CPU or
GPU is an intricate process that applies sequences of transformations. Some of these trans-
formations are device-specific. While OpenCL allows programmers to make an application
portable across devices, the optimisation strategies to enable efficient computation are not
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portable across devices. Lift (Stuewer et al [136, 137]) is a functional DSL that combines
high level algorithmic programming optimisation with lower level performance portability.
The transformation from the high-level functional primitives to the lower level optimisations
are written once by an expert system designer. Composition of algorithmic primitives is
taken into consideration to optimise data flow. The high abstraction layer transformations
are lowered to a functional parallel IR. Rewrite rules allow the expert tuner to express algo-
rithmic, data layout and address space patterns that map to OpenCL primitives. These rewrite
rules produce a searchable space of potential optimisations. A Monte-Carlo tree search of
the optimisation space is performed to select an optimal set of transformations for a target
device such as a GPU.

Futhark (Henrikson et al [55]) is a statically compiled functional language that supports
loops and parallelises code to execute on a GPU. Dependence analysis is elevated to a higher
abstraction level compared to an array’s subscript index analysis. Parallel operators are pro-
vided to programmers to maximise optimisation opportunities and ease code generation.
Futhark provides parallel operators specialised for parallel execution. Unlike a pure func-
tional language, Futhark allows in-place updates to arrays. These arrays allow explicit index-
ing within parallel operators and higher order functions. When safe to do so, in-place array
updates reduce the cost of copying arrays. The type system and alias analysis guarantee the
safety of in-place array updates. For/While loop constructs are permitted within the scope
of a function. Loop analysis is done by considering loop constructs as a simple form of tail

recursion. Excessive data transfer between the GPU and CPU is optimised by aggressively
hoisting memory allocations out of parallel code. Only regular arrays are supported for GPU
execution.

LambdaJIT (Lutz et al [89]) accelerates C++ lambda functions on GPUs. Lambdas are first
transformed to standalone classes. Although C++ is a statically compiled language, the Lam-
daJIT compiler lowers and serialises the computation of the lambda into byte code and injects
it into a separate section of the executable. Every invocation of the lambda is then replaced
with a call to the LambdaJIT runtime. When a lambda call site is activated, the LambdaJIT
runtime evaluates type traits embedded into the bytecode and safety of concurrent execution.
If it is safe to do so, CUDA kernels are generated for execution on the GPU.

Summary In the functional programming paradigm, parallelism is often implicit in the
algorithmic skeletons such as map. These algorithmic skeletons serve to abstract the higher
level logic of the algorithm away from its implementation details. This enables automatic
parallelisation systems to reason about device specific parallelism optimisations. A large
body of recent research is actively seeking to accelerate programs written using higher-order
functions on parallel hardware like GPUs.
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3.5 Parallel Domain Specific Languages

A DSL allows programmers to focus on the algorithm being developed. DSLs are developed
and optimised for a particular application domain. The programmer can then delegate the
implementation and performance optimisations to the DSL compiler. These compilers can
perform effective optimisations on program patterns that are more prevalent in the specific
domain.

Selective Embedded Just-in-Time Specialisation (SEJITS) (Catanzaro et al [32]) takes into
consideration that domain experts are most comfortable programming in high level lan-
guages despite the higher execution overhead of their managed runtimes. To ease the steep
learning curve required to produce high performance code in heterogeneous environments,
it provides a set of class libraries with abstractions that are appropriate for a non-expert pro-
grammer. These abstractions are selectively specialised and JIT compiled targeting available
hardware. By using meta-programming techniques, these abstraction layers are presented
to the programmer as extensions of the language or as embedded DSLs. By accelerating
only the computationally intensive code identified by the programmer, SEJITS can perform
optimisations at the algorithmic level specific to a domain while still providing a non-expert
programmer with the comfort and ease of use of a higher level programming language.

Asp (Kamil et al [69]) is a SEJITS based approach to acceleration in Python. It provides base
classes from which computational patterns can be extended and optimised using templates
or using specialised AST walkers. If the AST walker determines that all the code within the
computational kernel conforms to the computational pattern being expressed, code targeting
a specific device is auto-generated and optimised. In this case both the host language as
well as the language used to transform the computational pattern is Python. While this eases
development effort for non-expert programmers, it still requires a programmer to identify
computational patterns and apply the correct transformations to generate efficient code.

Delite (Sujeeth et al [138]) is a framework of compiler tools to aid in the quick develop-
ment of a Domain Specific Language (DSL). It provides programmers of DSLs with parallel
variants of higher order functions such as map,reduce and filter. Delite DSL code is
written in Scala and is initially compiled into Java bytecode. The Java bytecode is then trans-
formed into the Delite DSL’s own IR which is optimised and converted to the target parallel
platform like CUDA, OpenCL, C++ or Scala. The Delite IR is expressed in a sea-of-nodes
representation [105]. This representation removes artificial constraints on program order
and helps better represent parallel operations. The Delite DSL compiler performs common
compiler optimisations such as common subexpression elimination, dead code elimination
and code motion. Since these optimisations are performed at the level of objects, the overall
performance gain can be substantial. Delite also performs Array-of-Struct to Struct-of-Array
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data layout conversions to optimally match the target execution device.

SYCL [117, 118] is a single source API designed as a a higher level of abstraction for
OpenCL programming. It has been adopted as a Khronos programming standard [159]. It
has also been adopted to be the foundation of Intel’s OneAPI [58] framework for heteroge-
neous programming. SYCL is written in standard templated C++ programming. It simplifies
OpenCL’s model of separating kernel programming from host programming by providing
single source programming. The linked program contains both host and device code. It can
automatically select an appropriate device within a heterogeneous environment while also
enabling programmer directed device selection. Automatic type-checking between host and
accelerator is performed by the runtime. The SYCL language specification is designed to im-
plicitly perform compilaton and data transfer between host and accelerator devices. This is
unlike OpenCL where the programmer has to explcitly perform data transfer and compilation
steps before execution. Data transfer and kernel execution which is explicitly programmed
in OpenCL is implicitly managed as part of the SYCL language specification. The program
is statically compiled to SPIR-V [72], the Khronos standard IR for heterogeneous environ-
ments. Silva et al [129] report that SYCL programs use less memory (0.2x–0.39x) while
being 2.35x–2.77x slower than the equivalent OpenCL program.

LooPy [74] is an embedded DSL in Python that describes an execution model for array style
computations. An expert programmer is required to express loop domains in the polyhe-
dral model and encode a sequence of array computations to be executed. Any dependences
between statements should be described within the DSL. LooPy exposes various loop opti-
misation transformations to the programmer. These optimisations must be manually chosen
to generate and compile parallel code. LooPy generates OpenCL code from the polyhedral
representation of the computation to target various devices within a heterogeneous platform.
If the developer does not specify the types of an array, LooPy can infer the types and gener-
ate OpenCL kernels at runtime. LooPy does not automatically parallelise or optimise loops.
Instead it is intended to aid an expert programmer to optimise code while maintaining a high
level abstraction.

Summary A DSL can perform aggressive optimisations for specific domains. However,
it increases the burden on novice programmers who must learn a language specialised for a
particular task rather than program in a general purpose language. Morover in some DSLs,
such as LooPy, execution schedules and device specific optimisations must be explicitly
written by the programmer, requiring considerable understanding of the hardware.
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3.6 Intermediate Representations for Parallel Compu-

tation

An Intermediate Representation (IR) is a program representation that transforms a program
into a standard format that is fairly independent of the source language and the target binary.
It enables the easy retargeting of code to multiple target languages or hardware binaries.

SPIR-V [72] is an Intermediate Representation (IR) used in compilers for graphics shaders
and parallel compute languages such as OpenCL and OpenGL. SPIR-V is originally based
on the LLVM IR representation. The maturity of the LLVM compiler stack and almost all its
static optimisation passes can be used to optimise kernels. As this is a Khronos standard, the
IR can be distributed, rather than source code. This allows specific target devices to apply
target specific optimisations on the IR before final execution.

The Heterogeneous System Architecture (HSA) [6] is a specification that describes the inte-
gration of data-parallel and task-parallel devices on a single chip. It describes the hardware
integration requirements as well as a software programming model that is required to coher-
ently program each compute device in the chip. Such devices are designed to share global
memory with all other devices to reduce latency and data transfer times. In this respect,
the HSA model is different from the traditional heterogeneous device model where discrete
accelerator devices are connected over a high-speed data transfer bus such as PCIe.

HSA compliant compilers transform high level programs into a new IR called Heterogeneous
System Architecture – Intermediate Language (HSAIL). HSAIL is a data parallel IR that can
operate on multiple HSA compliant devices. It has explicit support for devices that follow a
data parallel model such as synchronisation primitives, a tiered data-parallel thread hierarchy
and a memory hierarchy. Each device will have its own backend finaliser to translate HSAIL
to its own ISA to execute on a particular device. The HSA runtime is heavily used in AMD’s
ROCm [8] to provide a unified heterogeneous programming model using C/C++. Numba
[78] also provides an HSAIL target enabling Python language support to target AMD GPUs.

INSPIRE (Jordan et al [66]) is an Intermediate Representation (IR) for modelling heteroge-
neous parallel programs. Specific directives such as fork-join, Inter-Process Communication
(IPC), data transfer and thread identification, formally and concisely represent parallel com-
putational models directly within the IR thus aiding analysis and optimisation. The concept
of a thread hierarchy, which is important in modern GPU systems, is represented using re-
cursively nested thread-groups. INSPIRE IR can be translated into a number of backends
such as OpenMP and OpenCL.
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Summary Intermediate representations standardise the representation of different control
structures in a higher level language into a small number of well recognised patterns. These
IRs are generated by compilers and not normally exposed to end-user programmers. The
higher level information lost while lowering into a standard IR inhibits optimisations to en-
able coarse-grained parallelism. Parallel IRs aim to encode parallelism within the computa-
tion directly into the IR. ALPyNA maintains loop dependence relationships in an in-memory
IR format to dynamically determine loop dependence relationships (Section 4.3.1). These
dependence relationships are evaluated at runtime for each loop nest execution instance.

3.7 Parallel Cost Models

Cost models to determine parallel execution time are dependent on computational size,
amount of parallelism identified, hardware characteristics and data access patterns. Trinder
et al present a wide-ranging survey on resource analysis and the analytical techniques used
to model parallelism on manycore systems [145]. Mittal et al [95] survey and categorise
compiler and runtime cost modelling of CPU–GPU systems based on (i) when the cost cal-
culation is scheduled (i.e. static or dynamic) and (ii) the relative performance of features
within the target device. Determination of costs for statically compiled programs will either
rely on profiling programs or symbolic resolution of the attributes that determine the amount
of parallelism that can be extracted from a program. In the case of static symbolic resolution,
this implies that the cost can only be determined if the domain size of the problem is hard-
coded within the program. However, this expectation is not practical. For example, in the
case of imperative loop nest parallelism, Peterson et al [109] report that roughly 11.9%, 71%
and 3.2% of the lower bound, upper bound and stride values respectively of loop constructs
in loop nests are unknown at compile time and in many cases inhibit parallelisation of loop
nests. In this section, efforts to determine the cost of parallel execution of a program are
discussed.

3.7.1 Analytical Cost Models

Armih et al [12, 13] describe a simple analytical cost model to load balance the distribution
of computation for parallel algorithmic skeletons. The CM1 model is parameterised only on
hardware characteristics to distribute the data amongst distributed multicore CPU devices.
The more generic CM2 model builds a relative cost model to distribute computation on nodes
with both a multicore CPU and a GPU. Computation is load-balanced across multiple nodes
by using the notion of relative speed which is derived from hardware parameters as well
as profiling time on each device within the heterogeneous environment. Belicov et al [24]
extend this approach to determine the cost of computation using an analytical cost model
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to weight the distribution of parallel computation between devices of a heterogeneous envi-
ronment. The computational capability of each device is calculated as a weighted product of
hardware characteristics such as frequency, cache-size , memory and communication latency.

The AJITPar project (Maier et al [91]) parallelises higher order functions written in Racket
and executed using the Pycket VM. Pycket is built using the PyPy tracing JIT compiler and
runtime (Section 3.1). Dependences between tasks are represented by task graphs. The
runtime tunes and transforms parallel skeletons to distribute the parallelism across many
cores. Morton et al [98] introduce a tuneable online cost model to AJITPar which uses
constant feedback and lightweight runtime profiling to tune the granularity of parallelism to
be distributed amongst parallel execution nodes. Bytecodes are classified and each bytecode
class is assigned a performance cost weight. These weights are learned by profiling a large
number of benchmark programs to find their relative execution costs. The guard conditions
at each control flow divergence point mark the end-points of a trace. The cost of a trace
is a weighted sum of its bytecode. Counters at each point of control flow divergence in a
program are used to weight each trace to calculate the overall program cost. At runtime,
the relationship between abstract cost and actual runtime (assuming a linear relationship)
is established. For any new execution time, the relative cost factor is used to derive a new
tuning factor to speed up execution.

The Memory Warp Parallelism (MWP)–Computation Warp Parallelism (CWP) model in-
troduced by Hong et al [57] is a detailed static analytical model to predict performance of
computational kernels on GPUs. It attempts to predict whether computational time in the
GPU is dominated by memory access time or vice-versa. This cost model uses memory
bandwidth, compiled instructions and pipelining effects within a kernel to compute which of
MWP and CWP effects dominate the execution time. Sim et al [130] extend this model to
add cache effects by profiling for the average memory access latency.

Chikin [34, 35] describe a dynamic cost model for parallelising OpenMP loops. The static
compiler stores a list of array subscript relationships which may be determined statically or
at runtime. At runtime, parameters such as loop stride are inferred from these relationships
to determine memory coalescing patterns in the loop nest. These are plugged into the fork-

join cost model of the CPU execution proposed by Liao et al [83] and the GPU execution
MWP–CWP cost model proposed by Hong et al [57]. These cost models are used at runtime
to predict the runtime on each device. The parameters used in these models utilise a large
number of micro-benchmarks on each machine to determine absolute values for memory
latency and cycles per iteration. Chikin’s model resolves memory coalescing and memory
bandwidth values at runtime to determine execution costs. The kernels are compiled based on
statically determined dependence structure and does not take context and kernel initialisation
into consideration. Like the original MWP–CWP cost model that it is based on, it also does
not take a cache memory hierarchy into consideration for cost analysis.
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Leung et al [82] introduced a cost analysis function into an automatic loop parallelisation
system for JikesRVM (discussed in Section 3.3). This is a simple parameterised analytical
model that assigns an absolute cost to each bytecode in the representation of a loop nest. The
cost for each byte code is calculated by profiling a range of micro-benchmarks on both the
CPU and GPU at installation time and averaging them. During compilation, the estimated
number of instructions becomes known and at runtime, the domain sizes and data transfer
costs can also be ascertained. Conditional branches are assumed to be taken 50% of the time
and that each nested loops execute 10 times unless the domain range is known at compile
time. The absolute costs are calculated by using the simple relations. The cost model in
Equation 3.1 shows the relationship between the average time (tcpu, tgpu) to execute a byte
code on each device, the number of byte code instructions in a loop (insts) and the size of
the iteration domain. Loops are assumed to be iterating over each item in the output array
and the size of the array (Aout.size) is used as the overall iteration domain size. A profiled
initialisation cost (init) and data transfer cost (copy) is taken into consideration for GPU
execution. However, this method does not take GPU starvation effects due to relative speed
difference with the host or how the a specific thread hierarchy for a GPU is mapped and
executed on a GPU’s hardware execution units.

Costcpu = tcpu × insts× Aout.size

Costgpu = init+ (tgpu × insts× Aout.size) + (copy ×
∑

A∈Ainout

A.size)
(3.1)

Zefreh et al [163] propose a cost model to determine a data partitioning scheme for loop
nests that are nested up to three levels deep. The cost model (3DDP) is designed to distribute
data across a heterogeneous cluster of GPUs for scientific computing. The algorithm load
balances the workload normalised to the computational power of the GPU. The objective
function aims to minimise data communication costs while maintaining load balancing be-
tween each node. This cost model assumes that no cross-iteration loop dependences exist
within the loop nest and can only handle up to three loops.

Kennedy and McKinley [71] calculate the cost incurred using different loop optimisation
strategies in static languages like FORTRAN where a linear relationship exists between sub-
scripts of each dependence pair. This cost model calculates the distance between each pair of
dependences in a loop nest. Costs are assigned for each loop execution instance depending
on the size of the cache line to simulate a cache-miss. For simple subscript relationships
such as ZIV and SIV (Section 2.2) these abstract costs can be easily established. However
the worst case scenario is assumed for more complicated memory access patterns such as
MIV relationships.
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Limitations Analytical cost models by Armih et al [12, 13] and AJITPar [91] require ex-
tensive profiling for each compute workload to accurately determine execution costs. The
Memory Warp Parallelism (MWP)–Computation Warp Parallelism (CWP) model and its use
by Chikin et al [34, 35] show accurate cost predictions for individual kernels on a GPU.
However, it does not take into consideration the relative performance difference of the in-
terpreter and GPU starvation. The 3DPP approach only takes perfectly nested loops up to
3 loops deep into consideration. Leung et al [82] predicate their model on the approximate
execution time to execute the computation equivalent to a byte code. Extensive profiling of
benchmarks on each GPU is required to learn this value. The ALPyNA Cost Model (Chapter
6) is a lightweight analytical cost model parameterised on the hardware characteristics of
each target device in a heterogeneous environment. It also considers GPU starvation effects
arising from the slower execution speed of the interpreter.

3.7.2 Machine Learning Models

The use of machine learning is becoming increasingly popular to predict execution perfor-
mance of computation as well as the appropriate optimisations to perform on the computa-
tion. Machine learning models are trained by an expert on the performance benefits of com-
piler optimisations and factors that affect performance. During execution, computational
patterns and their costs are inferred from the model which guides the compiler optimisa-
tions or the devices selected for executing the computation. Machine learning approaches to
compiler optimisation was pioneered by O’Boyle et al [50], in the Milepost compiler.

Wang et al [155] translate OpenMP programs to OpenCL and perform loop optimisations
and data layout optimisation. In the training phase, feature extraction is performed from the
AST of a large number of benchmarks. Relevant features are selected by an expert. From
the profiling runs, performance on both the CPU and GPU are correlated with the extracted
feature set. At runtime, the feature set of a program is extracted from its AST and a decision
tree classifier is used to predict the best performing device and the kernel variant to choose
for the target device. When loop bounds are unknown at the time of prediction an average
value is estimated.

XAPP (Ardlani et al [9]) predicts the performance of code executing on a GPU by studying
the features of the same program’s binary on the CPU variant. During the training phase of
the machine learning algorithm, architecture independent feature sets are extracted from a
large number of programs and their execution times on each of the target GPUs. A unique
cost function is then generated for each GPU and correlated to the architecture independent
feature set. A two level machine learning technique is used to train the model. At the
first level, regression models are built with a smaller set of features. The predictions from
the smaller models are combined to correlate the feature set to execution time on each GPU.
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During execution, the model extracts the relevant feature set from the CPU binary and makes
the relevant execution time prediction for each hardware GPU.

Wu et al [160] train a machine learning model on one GPU to predict performance scaling
on other GPUs. A large number of GPU benchmarks are executed on a single GPU and
performance counters during execution time are collected. To create the model, training
kernels are first clustered according to the feature set using the K-means algorithm. A neural-

net classifier is then built correlating the feature sets in the training kernel clusters to the
scaling factor for each performance counters. To predict the performance of a kernel on a
new GPU, the kernel cluster is first identified from the feature set and the amount of scaling
that can be achieved with the hardware resources is predicted.

Summary While a machine learning model may achieve good predictions regarding the
cost of computation on heterogeneous hardware, Amaris et al [5] conclude that in general,
an analytical model tends to be more accurate. Machine learning models also require a large
amount of training data and profiling to train the model. At runtime, the machine learning
cost models are comparatively heavier. Analytical models fit better into a JIT compilation
environment where such latency is not acceptable. In Chapter 6, ALPyNA’s cost model
(ACM) predictions are compared against a trained SVM model to determine the performant
device in a heterogeneous environment.

3.8 Summary

This chapter has presented and characterised the research literature related to the work pre-
sented in this thesis. It has brought together work in the domains of language VMs, loop par-
allelisation in managed languages, GPU related parallelisation in the functional paradigm,
parallel IRs and various analytical and machine learning cost models in CPU–GPU systems.

Exploitation of GPU performance in high level dynamic languages is an area of ongoing
active interest. A large body of research has been published on JIT compilation targeting
GPUs in functional languages and paradigms. To the best of our knowledge, relatively little
work has been done for automatic parallelisation in managed languages. Our extensive sur-
vey (Section 3.3.1) has uncovered Megaguards [115], Tornado [36, 45, 46], TFJ [127, 128],
Paragon [126] and Wang et al [156]. Chapter 4 describes a staged dependence analysis ap-
proach to automatically parallelise loops for GPUs and optimise execution using runtime
information. Chapter 6 describes a novel analytical cost model that predicts the optimal
device to execute a loop nest in a CPU–GPU environment.
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Chapter 4

ALPyNA : System Architecture

Dynamically typed, high-level languages such as Python, R, Ruby and JavaScript are in-
creasingly being used as general purpose computing languages in a wide range of appli-
cation domains (Chapter 2). Python is particularly attractive to end-user developers given
its simplicity and accessibility. These characteristics help developers express computation
in a compact style with reduced boilerplate code. This increases readability enabling rapid
prototyping and iterative software programming. The complexity of supporting all the ad-
vantageous features of a dynamic language is abstracted away from the programmer by the
VM. However, the brevity of dynamic languages comes at the expense of performance. The
overhead of program execution by a VM makes a program slower than a similar program
written in a statically compiled language. This overhead is due to the various features such
as dynamic dispatch and memory management.

Python programs are executed sequentially in the standard CPython interpreter. The Global
Interpreter Lock (GIL) in the CPython implementation [22] constrains execution to being
single-threaded. Parallel resources are now available as commodity hardware, whether as
multicore processors or GPUs. Given the ubiquity of GPUs and the performance improve-
ment they offer, it is reasonable to assess whether we can take advantage of them when
executing Python programs.

This thesis focusses on automatic acceleration of loop nests written in Python in a heteroge-
neous environment. This chapter presents the system architecture of ALPyNA, a novel hy-
brid loop parallelisation framework for Python. ALPyNA enables developers to parallelise
Python loop nests on GPUs transparently. A staged approach to loop dependence analysis is
described to optimise and execute computation depending on runtime parameters.

This chapter is structured as follows. Section 4.1 presents the motivation behind the design
framework. Section 4.2 describes the parallelisation advantages derived by deferring loop
nest dependence analysis to runtime. Section 4.3 describes ALPyNA’s static and runtime
staged loop dependence resolution framework. Section 4.4 describes the design of the GPU
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code generator that generates kernels from the exact dependence relationships derived at
runtime. Finally, Section 4.5 summarises the overall design of ALPyNA.

4.1 Motivation

Commodity GPUs offer a large numbers of cores (of the order of thousands) for minimal
cost and are often extremely effective for data parallel tasks. Depending on the workload,
such accelerators can provide orders of magnitude better performance. The most commonly
used programming languages to target GPUs are CUDA and OpenCL (Chapter 2). These are
C-like dialects with low level access to memory

The PyCUDA and PyOpenCL frameworks [75] are C-like eDSLs that enable GPU pro-
gramming using idiomatic CUDA and OpenCL. However, programming GPUs is highly
complex as it exposes the programmer to the physical realities of the GPU being used.
Numba [78] makes it slightly easier for programmers to write computational kernels in
Python, but expects idiomatic CUDA/ OpenCL compute kernels. The process of reason-
ing gets progressively harder for complex code and imposes high cognitive burdens on the
developer [39, 115, 136].

ALPyNA’s design goal is to dynamically maximise parallelism of loop nest execution in a
heterogeneous environment containing multiple accelerators. The remainder of this thesis
focusses on JIT compilation for CPU–GPU systems. However, ALPyNA is designed to be
able to easily extend this to other accelerators. Extensible features include (i) the Hardware
Abstraction Layer (HAL) (Section 4.3.3), (ii) parallelising each statement independently
(Section 4.4.1) and (iii) a cost model to guide the selection of the performant device (Chapter
6).

4.1.1 Design Principles

ALPyNA is designed with the goal of automatically parallelising loop nests in Python in
a heterogeneous environment. It is targeted as a tool to be used by non-expert developers.
The adjective ‘Pythonic’ describes elegant Python code, as agreed by the community of
practice. This philosophy is encapsulated in the PEP-20 document [143]. The principles
espoused in PEP-20 have heavily influenced the design of ALPyNA’s parallelisation system
for Python, which targets commodity GPUs to execute loop nests. A summary of these
‘Pythonic’ principles are available inside the Python interpreter as an ‘easter egg’—simply
enter import this to see the complete list of guidelines. This section explains how we
interpreted PEP-20 in our context.
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Beautiful is better than ugly. Simple is better than complex. Readability counts. Ac-
celeration frameworks that aim to automatically parallelise end-user code should not require
excessive refactoring or library calls that make the code ‘ugly’ or ‘complex’. ALPyNA anal-
yses sequential code and transforms it into GPU code without requiring the user to explicitly
rewrite loop nests. While ALPyNA performs ‘implicit’ i.e. automatic parallelisation, it is not
in general, an automatic framework. The user should explicitly identify and invoke depen-
dence analysis on functions with loop nests.

Explicit is better than implicit. Automatic parallelisation is done transparently and implic-
itly to aid non-expert developers to write idiomatic Python code. However, ALPyNA only
parallelises loop nests with known co-routines that yield integer iteration spaces with a con-
stant stride pattern (currently the range function). The user (who should be aware of this
semantic restriction) knows which regions of code may be appropriate for parallel execution.
Further, the user directly identifies each potential target for parallelisation with a simple call
to the ALPyNA framework. We treat parallelisation like memory management, as a runtime
concern that the developer does not need to handle explicitly; instead the developer devolves
responsibility to the ALPyNA execution engine. This is a case where Practicality beats
purity.

Errors should never pass silently. If a loop nest cannot be parallelised, then the system
reports the error. There may be a dependence violation, or the presence of Python structures
we cannot handle (e.g. function calls in loop bodies). Hardware constraints of GPU acceler-
ators such as memory constraints could prevent effective parallelisation. In each case, at the
appropriate stage, the framework should report an error to the user.

Now is better than never. This is the rationale for our just-in-time resolution of loop nest
dependences and value types. While there is some runtime overhead to this deferred analysis,
it provides more accurate dependence resolution and more efficient GPU code.

Namespaces are one honking great idea. ALPyNA uses namespaces to manage multiple
runtime variants of a single loop nest source fragment, perhaps targeting different backends
including GPUs.

4.1.2 Application Programming Interface

ALPyNA is a dynamic loop parallelisation framework for Python aimed at non-expert pro-
grammers. The API is designed to reduce the amount of boilerplate code while enabling the
analysis of conventional loop nests at runtime. It dynamically performs dependence analysis
on functions containing loop nests for each function invocation.

ALPyNA is not designed as a whole program compiler. The programmer writes numer-
ical kernels using nested for-loops with a constant stride value using the Python range
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function. Restricting the analysis to linear loops allows the analysis engine to reason about
dependences carried by the loops, and apply loop level optimisations.

Listing 4.1: Example invocation of ALPyNA API. Staged analysis is performed on all func-
tions on which static analyse is explicitly called on.

1 import numpy as np

2 import Static_Analysis_Driver as alp

3 ...

4 ...

5 alpyna_ex_engine = alp.static_analyse(func_list)

6 alpyna_ex_engine.loopy_kern_1(arr_a, arr_b, lims)

Listing 4.1 shows a typical example of the ALPyNA API as invoked by a user. Static analysis
(Section 4.3.1) is performed once at the beginning on all computational kernels containing
loop nests. The static analysis phase (Section 4.3.1) builds up the in-memory dependence
relationship data structures required for runtime dependence analysis. ALPyNA’s static
analysis returns a specialised module object containing a dictionary of callable functions
which the programmer can dereference and invoke with relevant arguments. In this exam-
ple, a function loopy kern 1 (shown in Listing 4.2) will be called. When such functions
are called at runtime, ALPyNA’s dynamic analysis and introspection system intercepts each
call; it then generates, compiles, and executes relevant CPU or GPU kernels with appropriate
cost modelling, data marshalling and transfer. The transfer of control from the Python VM
to ALPyNA’s runtime is transparent to the user.

4.2 Benefits of Deferring Analysis to Runtime

Consider the loop in function loopy kern 1 shown in Listing 4.2. The dependence re-
lationship between the load and store operations is classified as a SIV relationship [52].
Dependence analysis informs us that the statement in the for-loop can be parallelised as long
as the loop iteration domain is within the range [0, 1024) in order to be correct. Allen and
Kennedy [70], define the number of iterations between the load and the store as the distance.

Listing 4.2: Benefit of runtime parallelisation
def loopy_kern_1( arg_a, arg_b, arr_len ):

for i in range(arr_len):

arg_a[i+1024] = arg_a[i] + arg_b

In a static language like Fortran, symbolic resolution of the limits would result in the gen-
eration of a speculative parallel variant of the kernel nested within a guard condition that
checks if the loop iteration domain (distance) is less than 1024. If so, a parallel version of
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the loop would be invoked for execution. Otherwise the loop would be executed sequentially.
Smarter compilers would do strip mining to tile all iterations that can be run in parallel and
execute them with SIMD instructions.

Listing 4.3: Runtime parallelisation with loop invariant in subscript
def loopy_kern_2(arg_a, arg_b, al ,alpha) :

k = alpha + arg_b

for i in range(al):

arg_a[i + k] = arg_a[i] + arg_b

Listing 4.3 shows a similar loop nest with the distance becoming unresolvable at compile
time due to the presence of a loop-invariant variable k. To ensure correctness, compile
time analysis has to conservatively assume that dependences exist and execute the loops
sequentially or execute the parallel version when all the guard conditions have been met.
Equation 4.1 shows the influence of variable k, the iteration domain size (al), and the size
of the array (size) on the distance and direction of cross-iteration dependences. The cross-
iteration dependences (depicted using notation detailed in Section 2.2) reverses direction
depending on whether k is positive or negative.

Dependence =



(k ≥ al) ∨ (− (size− al) ≤ k ≤ −al < 0) no dependence

(k = 0) ∨ (k = −size) δ∞

(0 < k < al) δi

all other cases δi and/or δ
−1
i

(4.1)

When the number of data dependences becomes larger, the dependence relationships make
generating all the required guard conditions and code variants NP-hard. By deferring this
analysis to runtime, we can infer how much parallelism can be extracted from the loop-nest
depending on the loop size and generate code to satisfy the dependence constraints while
still executing in parallel.

Listing 4.4: Example loop nest dynamically parallelised by ALPyNA
def ln_func(arg_a,k,limits) :

im, jm = limits

for i in range(0,im,1):

for j in range(0,jm,1):

arg_a[i+k,j] = arg_a[i,j] + 4 # Statement - S1

arg_a[i+16,j] = arg_a[i,j] # Statement - S2

To demonstrate the potential optimisations that can be unlocked due to a dynamic knowledge
of loop bounds and/or subscript values, consider the loop nest in Listing 4.4. The dependence
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Figure 4.1: Dependence graph
of loop nest in Listing 4.4
with iteration domain (i,j) ←
(32,1024) and (k)← 64

Figure 4.2: Dependence graph
of loop nest in Listing 4.4
with iteration domain (i,j) ←
(32,1024) and (k)← (8)

Figure 4.3: Dependence graph
of loop nest in Listing 4.4
with iteration domain (i,j) ←
(16,1024) and (k)← (16)

relationships between the two statements S1 and S2 are determined by loop bounds (im, jm),
the loop invariant variable ‘k’ and the coefficients and constants in each array subscript. Due
to the unresolved loop domain sizes and non-iterator variable within the array subscript on
the LHS of S1, a purely static compiler must conservatively generate sequential code.

Figure 4.1 shows the dependence graph for an instance of the nested loops in Listing 4.4
having limits (im, jm) ← (32, 1024) and (k) ← (64). A true dependence carried by the
outer loop Fi exists from Statement S2 to S1 as well as from Statement S2 to itself. The
latter dependence is a cyclical dependence which requires sequential execution of the loop
that carries the dependence (Fi). All 32×1024 execution instances of Statement S1 can safely
be executed in parallel because k ≥ im. Executing the outer loop (Fi) sequentially (im ←
32) allows 1024 execution instances (corresponding to the inner loop Fj) to be executed in
parallel. Figure 4.2 shows the dependence graph for the same loop nest with domain limits
(im, jm) ← (32, 1024) and variable (k) ← (8). As k < im, dependences carried by the
outer loop (Fi) can cause cross iteration dependences. The dependences carried by (Fi)

cause cyclical dependences on S1 and S2 to themselves, as well as between S1 and S2. To
prevent the violation of these dependence constraints, the outer loop carrying the dependence
(Fi) is executed sequentially. This enables parallel execution of the inner loop (Fj). If the
loop limits have the values (im, jm) ← (16, 1024) and (k) ← (16), there are no cyclical
dependences within the dependence graph. Therefore, all instances of statements S1 and S2

can be executed in parallel (Figure 4.3).

4.3 Staged Dependence Analysis

Often, the key control structure for parallelism in imperative languages is the loop, particu-
larly hot loops (where most of the execution time is concentrated). The key data structure in
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dependence analysis for parallelising loop nests is often the array.

A large number of loop parallelisation techniques have been developed for use in optimising
compilers. Chapter 2 has already referred to the fundamental aspects of loop parallelisation
encapsulated in the work of Allen and Kennedy [70]. For the majority of use-cases, Goff
et al [52] present simplified fast dependence tests. By computing the cyclic dependences
between statements carried by various loops, we can identify which loops can be executed
in parallel for the overall set of nested loops, without changing the computation. These
techniques generally apply to imperative, numerical computation. Code is usually written in
static languages such as Fortran and C/C++ high-performance computing code although the
variable aliasing problem is more acute for C-style languages.

The challenges of general auto-parallelisation derive from the following root causes:

1. complexity of analysis (for both aliasing and dependence).

2. conservative nature of static analysis, since runtime values like loop bounds are usually
unavailable.

3. difficulty of mapping parallel tasks to available hardware resources to achieve signifi-
cant speedup.

ALPyNA overcomes the above difficulties by using a hybrid analysis technique, combining
static and runtime dependence analysis. It benefits from the Python language’s relative sim-
plicity, in terms of structured control flow (no C-style goto) and loop iterator guarantees
provided by the range function semantics. These features make analysis much less com-
plex. The Python execution is interpreter-based and relatively slow, and the performance
gains from parallel execution make the significant analysis overhead affordable. Depen-
dence analysis of the loops reveals opportunities for parallelism while still maintaining the
ordering constraints expressed in the original computation.

ALPyNA targets linear loop nests as the unit of analysis in functions designated by the pro-
grammer rather than being a whole program compiler. The rich nature of the Python runtime
environment enables the memoisation of analysis artifacts throughout program execution. It
refines the knowledge base as information about data types, loop bounds and runtime de-
pendences become available. The ALPyNA loop parallelisation framework is designed to
generate and JIT compile CPU and GPU kernels from Python loop nests. The decision to
compile and execute a particular loop nest instance on either the CPU or the GPU will de-
pend on the iteration domain sizes and the loop carried dependences that arise at runtime.
ALPyNA optimises kernel generation corresponding to the dependences that are resolved at
runtime. This avoids the code bloat that occurs when statically generating kernel variants
that may emerge at runtime. ALPyNA’s runtime code generation scales better than static
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Figure 4.4: The ALPyNA system architecture is staged, with an ahead-of-time static analysis
and a near-identical structure for the lazy dynamic analysis; both resolved and deferred de-
pendence relationships are preserved in memory from the initial stage and utilised at runtime.

generation as the number of variants grow exponentially as a function of the dependence
relationships (Section 4.2) and data types of arrays. A cost model (Chapter 6) is deployed to
automatically and transparently determine the optimal device for each execution instance of
the loop nest.

Chapter 3 has already discussed runtime frameworks that speculatively generate kernels at
compile time based on cost models. Instead of speculative generation of variants depend-
ing on a combination of iterator, subscript and hardware properties, ALPyNA uses a staged

approach to parallelisation. Figure 4.4 illustrates ALPyNA’s staged compilation architec-
ture. The ALPyNA API (Section 4.1.2) is the interface used by developers to invoke static
analysis of loop nests. The left hand side outlines the static analysis and compilation while
the right hand side outlines the runtime compilation. The static analysis phase (Section 4.3.1)
preprocesses the loop nests (§4.3.1: Normalisation and §4.3.1: If–Conversion). If all the de-
pendences can be obtained by static analysis, skeletal kernel variants are generated (§4.3.1:
Partial Dependence Analysis). This builds up in-memory data structures to enable runtime
analysis and kernel generation. The static compilation context then transforms replaces loop
nests with nested functions (§4.3.1: Nested Function Generation).

The right hand side of Figure 4.4 shows the ‘execution context’ which performs dependence
analysis on loop nests with dependences marked for runtime analysis (Section 4.3.2). The
Hardware Abstraction Layer (HAL) (Section 4.3.3) is the interface between the analysis
framework and the hardware specific code generation. Code generation for loop nests after



4.3. Staged Dependence Analysis 59

runtime analysis is discussed in Section 4.4. Runtime type patching (Section 4.4.2) is then
performed on these kernels before JIT compilation and execution.

4.3.1 Static Analysis

ALPyNA takes, as its input, functions written in ordinary Python. An AST parser scans
for numerical loop nests within these functions and analyses for potential parallelism. All
other regular Python code constructs will be executed in the CPython interpreter as normal.
This allows developers to interleave loop nests with standard Python code, e.g. conditional
execution constructs (if / else constructs that are not inside loop bodies). Figure 4.5 provides
an overview of ALPyNA’s static analysis phase which is described in this Section.
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def saxpy(a,b,k):
  for in range(len(b)):
    b[i] = k * a[i] + b[i]

Figure 4.5: ALPyNA preprocessing, static loop analysis and skeleton generation.

Normalisation

ALPyNA’s static analysis phase converts loops into a normalised form. To do this, ALPyNA’s
AST parser transforms a reference to the loop iterator within array subscripts to the form
(start + (iterator × stride)). The loop limits are normalised to achieve a unit loop stride.
ALPyNA performs symbolic evaluation to simplify the normalised subscript and limit ex-
pressions.
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Listing 4.5: Source loop nest before preprocessing.
1 def mfunc(arg_a, arg_b , test, limits):
2 ylim, xlim = limits
3 for i in range(ylim):
4 for j in range(2,xlim,4):
5 if test :
6 arg_a[i+1, j] = arg_a[i,j] ** 2 + arg_b[j]
7 else :
8 arg_a[i+1, j] = arg_a[i,j] ** 3 - arg_b[j+1]

Normalisation of linear subscript expressions in loop nests is a standard optimisation pass
performed in static compilers such as LLVM [79] and JIT compilers such as HotSpot [105].
Standard dependence tests, such as SIV, ZIV and MIV, are performed on loops with a unit
loop stride. By transforming loops to a normal form, dependence testing can be simplified.

Loop bounds expressions, i.e. parameters of linear loop iterator generators that are to be
evaluated dynamically are hoisted outside the loop nest and stored in temporary variables
when safe to do so. Any such expressions that cannot be definitively determined at runtime
are marked for runtime evaluation as these may affect the dependence graph and thereby the
potential to parallelise the loop nest.

Consider the loop nest shown in Listing 4.5. Each loop within the loop nest is identifed as
(Fx) where x is the iteration variable. The inner loop nest (Fj) has a stride length of 4 and the
iteration domain starts at 2. ALPyNA replaces the iteration variable j by its corresponding
normalised expression (Listing 4.6). In this case, the original loop limit has been replaced
and hoisted out of the loop nest as a static optimisation.

If–Conversion

Control flow dependences within a loop nest cannot be modelled using conventional data
dependence techniques. Control flow divergence typically occurs due to the presence of if
statements. A forward branch is a branch for which the target of the control flow jumps to
a location within the same loop. A branch transferring control to a target outside the loop
body is classified as an exit branch. This can typically be mapped onto the Python break
statement.

To model control flow dependences, all statements within a loop body are transformed to a
predicated execution form [3]. Each statement is guarded by the presence of a guard con-
dition. The predicate of the guard condition is a boolean expression of compiler generated
conditional variables. Scalar expansion [104] is performed on compiler generated condi-
tional variables to increase opportunities for parallelisation. Predicate variables generated
for forward branches are expanded to the dimensions of the loops enveloping its definition.
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Listing 4.6: Example of loop normalisation and if-conversion.
1 def mfunc(arg_a, argb, test, limits):
2 ylim, xlim = limits
3 _i_tfend_00_ = (ylim + 0 + 0) // 1
4 _j_tfend_00_ = (xlim + -2 + 3) // 4
5 _condvar_000 = np.full((_i_tfend_00_, _j_tfend_00_), 1)
6 for i in range(0, _i_tfend_00_, 1):
7 for j in range(0, _j_tfend_00_, 1):
8 _condvar_000[i, j] = test
9 if _condvar_000[i, j]:

10 arg_a[i+1, 2 + j*4] = arg_a[i, 2 + j*4 ] ** 2 + arg_b[2 + j*4]
11 if not _condvar_000[i, j]:
12 arg_a[i+1, 2 + j*4] = arg_a[i, 2 + j*4 ] ** 3 - arg_b[3 + j*4]

Consider the loop nest in Listing 4.5. The control flow divergence caused by the if-else

condition is transformed by predicating each statement with a boolean expression. The in-
stances of statements on lines 6 and 8 which are executed depends on the resolution of the
conditional expression for each loop instance. Each computational statement is executed if
it’s own predicate expression evaluates to True. When converted into parallel kernels, these
predicate conditions along with the statements can be executed in parallel while maintaining
the correct data dependences.

Each compiler generated forward and exit predicate variable is defined outside the loops
in which they are used. To simplify the scalar expansion of predicate variables, data flow
analysis is not performed on compiler generated variables. This optimisation exploits the fact
that every read from such predicate variables is dominated by a single definition for forward

branches and by two definitions in the case of exit branches. Forward branch predicate
variables are defined at a single point outside the loop in which they are used. Predicate
variables used for exit branches are defined once outside the loop in which they are used and
once immediately preceding their use to determine if the exit condition has been triggered.
As a memory optimisation, exit branch predicate variables are expanded to a vector with the
dimensions of size of the innermost loop that references the exit branch predication variable.
This is due to the existence of a loop carried dependence between the source and sink of
the compiler–introduced exit branch predication variable. This dependence is carried by the
innermost loop.

Partial Dependence Analysis

ALPyNA accelerates loop nests within functions specifically identified by programmers. A
single ALPyNA function call (Section 4.1.2) preprocesses loop nests in all such functions to
aid analysis (as described above).

Figure 4.5 shows ALPyNA’s static analysis phase comprising its parser, ‘loop landmark IR’
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def function(): 
    
    for i in range(.....):
        for j in range(....):
            for k in range(....):
                c[i][j] += a[i][k] * b[k][j]
             
         .......
         .......
         ....... 
    for i in range(.....):
        for j in range(....):
                c[i][j] += a[i][j]
       
       

   { AST-node, line num, nesting-level, predicate, metadata, record-type: LoopHeader}  

   { AST-node, line num, nesting-level, predicate, metadata, record-type: Statement}   

   { AST-node, line num, nesting-level, predicate, metadata, record-type: LoopHeader}  

   { AST-node, line num, nesting-level, predicate, metadata, record-type: LoopHeader}  

   { AST-node, line num, nesting-level, predicate, metadata, record-type: LoopHeader}   

   { AST-node, line num, nesting-level, predicate, metadata, record-type: Statement} 
   { AST-node, line num, nesting-level, predicate, metadata, record-type: LoopHeader}   

   { AST-node, line num, nesting-level, predicate, metadata, record-type: LoopHeader}  

Loop Header Type
Assignment Statement Type

Function Definition Type

Loop Landmark
Structure:002

Loop Landmark
Structure:001

Figure 4.6: Simplified structure of loop landmark structure retained by ALPyNA for runtime
analysis.

structure and skeletal kernel generation. Each function is parsed using Python’s AST library
to create a flat record structure consisting of ‘loop landmarks’, i.e. fragments of abstract syn-
tax that determine the looping behaviour. This record structure comprises of information
required for dependence analysis of the loop. These are grouped together to create ‘loop
landmarks’, as well as group variable and subscript pairs together according to their com-
plexity.

If all the loop bounds and data dependences can be determined statically, ALPyNA can
generate the untyped GPU kernels (corresponding to the statements in the loop nest body)
at compile time and cache these kernels in memory to reduce dynamic analysis time (Figure
4.5). In such a scenario, only the type information is required to be patched into the cached
untyped kernel. This is obtained at runtime by using introspection (Section 4.4.2).

Along with the GPU kernels, the corresponding orchestration code for execution and data
management that respects loop carried dependence constraints is also generated and cached.
This code will henceforth be referred to as drivers in this thesis. Such drivers are only gen-
erated if the dependence structure of the loop nest can be determined ahead of time. The
auto-generated drivers are responsible for transferring data and marshalling scalars (Section
4.4.2 – GPU Scalar Marshalling) and for executing kernels without violating dependence
constraints. If any data dependence cannot be determined statically, the partial evaluation
of dependences is cached within the ‘loop landmark IR’ to use during runtime evaluation of
loop nest dependences. Figure 4.6 shows a simplified form of these in-memory data struc-
tures used for dependence analysis. Scalar variable writes in loop nests are a special case,
requiring runtime analysis and code generation (Section 4.4.2 – GPU Scalar Marshalling).

On the other hand, if the static analysis cannot determine loop bounds at compile time, then it
will mark the loop nest for dependence analysis at runtime. The ‘landmark’ record structure
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Listing 4.7: Python loop nest input to ALPyNA – saxpy.
1 def saxpy( arr_y , arr_x , constval ):
2 for idx_i in range(len(arr_y)):
3 arr_y[idx_i] = constval * arr_x[idx_i] + arr_y[idx_i]

containing the original Python AST along with loop nests marked by ALPyNA for deferred
analysis are preserved as in-memory data structures. These data structures are carried over
to the runtime execution context to aid dynamic dependence analysis. At runtime, paralleli-
sation is performed on loop nests that have been deferred for runtime dependence analysis.

Nested Function Generation

ALPyNA statically replaces loop nests within the body of marked functions with nested
functions. These nested functions initiate dynamic dependence analysis, type inspection and
runtime code generation. During parsing, the Python AST node representing the outermost
loop is replaced with a nested function that is generated after parsing and analysing the
original loop nest.

The standard Python AST library is utilised to replace the original Python function with
a nested function. Expressions from the original source code and definitions of compiler
generated temporary variables that are hoisted entirely out of the loop nest are marked as
nonlocal within the nested function. This ensures that during introspection variables are
dereferenced from the correct scope.

During construction of the replacement nested functions, ALPyNA generates a namespace
within the Python runtime for insertion of JIT compiled kernels. A unique name is gener-
ated for each nested function. Loop nest execution sites within the original source code are
replaced with calls to the nested functions. Kernels generated at runtime are mapped to the
unique nested function name.

A container data structure holding all the variables hoisted out of the loop nest is passed into
a variant selection function that analyses and compiles code for the loop nest. This data
structure acts as a handle to the nested function to introspect and dynamically query loop
limits and other variables marked for runtime analysis (such as loop-invariants). This enables
runtime analysis to accurately determine loop dependences and parallelise according to the
actual runtime dependence. In contrast, a purely static compiler would need to conservatively
assume the existence of all dependences that it cannot explicitly disprove with information
available ahead-of-time.

Consider the function saxpy shown in Listing 4.7. After parsing the loop nest and building
the loop parallelisation records (Section 4.3.1) the code is internally transformed to the form
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Listing 4.8: ALPyNA – static transformation of saxpy with closures.
1 def saxpy(arr_y, arr_x, constval):
2
3 def saxpy_lnest_000():
4 nonlocal constval
5 nonlocal arr_x
6 nonlocal arr_y
7 nonlocal _idx_i_tfend_00_
8 xfer_container = rt.Closure_Arg_Container()
9 xfer_container.constval = constval

10 xfer_container.arr_x = arr_x
11 xfer_container.arr_y = arr_y
12 xfer_container._idx_i_tfend_00_ = _idx_i_tfend_00_
13 rt._ufunc_mux(xfer_container, mod_self, ’saxpy_lnest_000’, mod_opts)
14 constval = xfer_container.constval
15 arr_x = xfer_container.arr_x
16 arr_y = xfer_container.arr_y
17 _idx_i_tfend_00_ = xfer_container._idx_i_tfend_00_
18 _idx_i_tfend_00_ = len(arr_y)
19 _idx_i_tfend_00_ = (_idx_i_tfend_00_ + 0) // 1
20 saxpy_lnest_000()

shown in Listing 4.8. The variables identified as within the scope of the loop are arr y,

arr x and constval. Along with the variables, the expression to determine the iteration
domain of the loop is also hoisted out of the loop. Variables that have been taken out of the
scope of the loop nest are explicitly marked as nonlocal within the nested function (lines
4–7). The nested function marshals all the variables used by the loop nest into a variant
selection function along with a reference to the closure (line 13).

The nested function also has access to the ‘loop landmark’ structure of the AST and the
partial evaluation cache (Section 4.3.1). The AST nodes are required to perform runtime
dependence analysis on the loop nests. To prevent the AST nodes of the original loop nest
from being garbage collected by Python’s reference counting GC, the nodes are specifically
added to a GC-barrier structure. In addition to maintaining the outermost node of the loop
nest, all nodes within the loop records which contain references to child AST nodes of the
outermost loop AST node are also not garbage collected. This preserves them for dependence
analysis of each variable pair and runtime code generation.

ALPyNA uses the handle to the nested function to introspect vectors and variables for their
types and vector dimensions. Variable types discovered at runtime are patched into the gen-
erated kernels to create typed variants of kernels that are compiled into binary form. Each
compiled kernel is then cached by Numba, which is used as a backend compiler for the CPU
and the GPU (Section 2.1.4 and 3.2). The variant-selection function also encapsulates the
introspection, cost model and device selection logic. ALPyNA also introspects the binding
of loop limit expression evaluations to inform runtime dependence analysis.
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ALPyNA Module Generation

The final stage of ALPyNA’s static compilation phase is to prepare all data structures re-
quired for runtime evaluation, compilation and execution. Each loop nest is replaced with a
nested function (Section 4.3.1) which channels all execution into a call that selects a target
device to execute a loop nest. Each nested function is given a unique handle for the ALPyNA
runtime to dereference on demand.

ALPyNA dynamically generates a Python module and returns a handle to this module as a
Python object to any code that calls the ALPyNA static analysis function. Any in-memory
data structures generated during the static analysis phase that are required for runtime evalu-
ation are stored in this newly generated module within their own namespaces. A reference to
the module is stored within itself to map the function to its corresponding in-memory partial

evaluation cache. Numeric code very often imports Numpy arrays and math functions. These
modules along with the ‘Numba’ compiler (Sections 2.1.4 and 3.2) are imported directly into
the auto-generated and compiled ALPyNA module to reduce the overhead associated with
locating and importing these modules during runtime. Every call to the execution context of
a loop nest within a function marked for analysis can now be intercepted by ALPyNA for
runtime analysis and code generation. At this stage control is handed over to the ALPyNA
runtime.

4.3.2 Runtime Analysis

After ALPyNA has completed the static analysis phase of compilation, a reference to the
generated ALPyNA module (described in Section 4.3.1) is returned to the caller. When a
programmer dereferences a function within this module, the closures representing each loop
nest within the original source lazily invoke runtime dependence analysis.

Figure 4.7 shows the overall analysis process at runtime. It starts when a function previously
statically analysed and prepared by ALPyNA for runtime dependence analysis is executed.
The location of a loop nest invocation is trapped by the closure that statically replaced the
loop nest.

If all the dependence relationships in the loop nest were resolved statically, loop nest variable
types are inspected, patched into the statically generated kernel, compiled and executed.
Any loop nest with dependences unresolved at compile time is analysed again. Dependence
relationships that were deduced statically are retrieved from the partial evaluation cache.
This is done to reduce analysis time during run time. These dependence relationships are then
augmented with dependence relationships that are derived specifically for each execution
instance of the loop nest.
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Figure 4.7: ALPyNA runtime dependence analysis and kernel generation. Dependence rela-
tionships (resolved and deferred) and untyped statically generated kernels are retrieved from
static analysis (yellow) and augmented at runtime with runtime analysis (green).
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However, in many instances of numerical loop nests, sufficient information about loop itera-
tion domains and non-iterator variables cannot be obtained statically. To ensure correctness,
static loop parallelisation conservatively assumes a dependence exists when fine grained res-
olution of the dependence relationship cannot be established. This hinders opportunities for
optimisation and parallelisation. ALPyNA utilises the Python language’s reflection capabil-
ity [131] to introspect expressions that inhibit such fine resolution of dependence relation-
ships.

The dependence graph is generated for each instantiation of a loop nest. Regenerating the ex-
act dependence graph, where possible, at runtime enables ALPyNA to generate an optimised
parallel variant of a loop nest. GPU kernels and their associated drivers are generated with
the newly discovered dependence constraints. Resolution of the expressions which make
up the loop domain are used to set the GPU grid and block sizes with suitable padding to
conform to the minimum thread-block sizes (Section 4.4.1).

4.3.3 Hardware Abstraction Layer

One of the goals of ALPyNA is to be able to extend runtime loop analysis and execute loop
nests on a wide range of accelerator devices that may be present in a heterogeneous environ-
ment. To enable this, ALPyNA’s loop parallelisation and higher level optimisation passes
are abstracted away from the code generator for each accelerator by a Hardware Abstrac-
tion Layer (HAL). The HAL layer encapsulates all architecture specific code generation to
enable portability. ALPyNA currently supports NVIDIA GPUs using CUDA. However, the
underlying Numba compiler has support for accelerator devices that have OpenCL compil-
ers. ALPyNA can be extended to generate code for devices with an OpenCL compiler by
generating the OpenCL primitives required to implement the API.

The HAL currently enforces the implementation of the following code generation API for
each accelerator:

• Data Transfer: Code should be generated to transfer all vectors referenced by a com-
pute kernel to the memory space of the target device. All data transfer primitives be-
tween the host and target device are hoisted out of the loop nest execution. The HAL
API provides a ‘prologue’ and ‘epilogue’ function which should respectively generate
code for data transfer to the accelerator and back.

• Kernel Type Patching: Python being a dynamically typed language, ALPyNA intro-
spects the CPython VM for variable types and patches these before JIT compilation.

• Thread-Hierarchy Calculation: Modern GPUs arrange groups of parallel threads
into a hierarchical structure. CUDA refers to these as grids and thread-blocks. This
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is executed either during the static skeletal code generation phase or at runtime when
ALPyNA resolves the domain iteration sizes (Section 4.4.1 – GPU Thread Hierarchy).

• Kernel Generation: Untyped kernel code is generated and cached. If these kernels
are generated during static analysis, these are cached and preserved to reuse at runtime
(Figure 4.7). These functions are only called at runtime if dependence analysis of the
loop nest was deferred for runtime analysis.

• Patch Scalar-Write Kernels: A statement that writes to a scalar and reads from it
after loop nest execution is marshalled into a compiler generated vector. Marshalling
such primitives into type specific vectors determined at runtime (Section 4.4.2 – GPU
Scalar Marshalling) reduces transfer overhead. These scalars are then dereferenced in
each runtime generated kernel according to their type and position within the compiler
generated vector.

• Kernel Driver Generation: Host side code that correctly maintains loop carried de-
pendences and invokes parallel kernels is generated during static compilation or at
runtime. This code is generated during static analysis if all dependences can be de-
termined at that stage. If any dependence analysis was deferred to runtime (Section
4.3.1 – Partial Dependence Analysis) or if any statements with scalar writes (Section
4.4.2 – GPU Scalar Marshalling) are present within the loop nest, the host side code
generation is also deferred to runtime. Any loops that carry dependences are executed
sequentially while executing parallel kernels with the correct thread-hierarchy inferred
from runtime introspection of loop limits. Runtime kernel driver generation can tailor
the number of sequential loops executed on the host according to dependences that are
determined at runtime.

• Cost Model Calculation: ALPyNA calculates a relative cost for each accelerator in
a heterogeneous environment. The execution cost is calculated relative to the perfor-
mance of the VM. These cost calculation is performed after resolution of dependences
and types at runtime. These costs should take execution characteristics of the acceler-
ator device, how many parallel threads are executing, and the relative speed of the VM
executing sequential loops on the host device to schedule kernels. The cost model is
further discussed in Chapter 6.

4.4 Code Generation

If all loop nest dependence relationships can be ascertained statically, the code generator
creates and caches untyped skeletal kernels. The corresponding host driver code to execute
sequential loops and schedule parallel kernels is also generated and cached.
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Runtime optimisations may change which loops are selected to execute within the interpreter.
Adapting to these runtime dependences will change the structure of the kernels generated.
Statements with writes to a kernel require runtime marshalling into type based vectors (Sec-
tion 4.4.2 – GPU Scalar Marshalling) which in turn will change the calling convention of
accelerator kernels from the host device. Rather than speculatively generating multiple ker-
nel variants for a loop nest, ALPyNA also defers code generation to runtime.

To maintain the API of the HAL layer, patching of types for JIT compilation is performed
by ALPyNA. JIT compilation of a loop-nest for the CPU is done by Numba’s LLVM based
backend. The generated code is single threaded and is not vectorised. A relative execution
cost is calculated for the CPU variant (Chapter 6) to decide whether execution of the CPU
variant over the GPU variant is quicker. Optional instrumentation is also utilised to gen-
erate install-time profiling to initialise the cost model. To reduce overall compilation time,
kernels are JIT compiled only for the target device selected by the cost model. After compi-
lation, ALPyNA maps the compiled binary CPU kernel to the CPU namespace of the closure
representing the loop nest.

4.4.1 GPU Code Generation

ALPyNA generates a single GPU kernel for each statement within a loop nest. This design
decision helps ALPyNA to extract the maximum amount of parallelism from a loop nest in
the following situations :

• Imperfect Loops: the number of loops dominating each statement vary within an
imperfect loop nest. Statements that are nested deeper within an imperfect loop nest
have a larger number of execution instances relative to statements that are nested to a
lesser extent. This in turn automatically implies differing amounts of parallel execution
instances for such statements.

• Differing parallelisation constraints: Two statements, within perfect or imperfect
loop nests, may potentially have different scheduling constraints due to loop carried
dependence constraints on each statement. This may result in different loops requiring
sequential execution to maintain loop carried dependences between two statements
(e.g. dependence graph shown in Figure 4.1 for Listing 4.4).

Figure 4.8 shows the interaction between the interpreter and the generated GPU kernels for
the transformed loop nest in Listing 4.6. A kernel GPU is generated for each statement
within the original loop nest. Dependence analysis evaluates ordering constraints between
statements and determines which loops have to be executed sequentially. Kernels repre-
senting each statement are called in the topological order in which the dependence graph is
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parsed. The whole set of kernels are executed together on the GPU to avoid data transfer
between the interpreter and the GPU within the context of a loop nest. Data access between
kernels occurs through GPU global memory.

for i in range(0, _i_tfend_00_, 1):
    for j in range(0, _j_tfend_00_, 1):
        # Stmt-S1
        _condvar_000[i, j] = test
        if _condvar_000[i, j]:
            # Stmt-S2
            arg_a[i+1, 2 + j*4] = arg_a[i, 2 + j*4 ] ** 2 + arg_b[2 + j*4]
        if not _condvar_000[i, j]:
            # Stmt-S3
            arg_a[i+1, 2 + j*4] = arg_a[i, 2 + j*4 ] ** 3 - arg_b[3 + j*4]

for i in range(0, _i_tfend_00_, 1):

Host Buffers

Host Buffers

#Kernel_S1
_condvar_000[i, j] = test

GPU 
Memory

gpu_kernel_S2()

gpu_kernel_S3()

gpu_kernel_S2()

gpu_kernel_S3()

gpu_kernel_S2()

gpu_kernel_S3()

gpu_kernel_S1()

...........

...........

...........

...........

if _condvar_000[i, j]:
    # Kernel_S2
    arg_a[i+1, 2 + j*4] = arg_a[i, 2 + j*4 ] ** 2 + arg_b[2 + j*4]
if not _condvar_000[i, j]:
    # Kernel_S3
    arg_a[i+1, 2 + j*4] = arg_a[i, 2 + j*4 ] ** 3 - arg_b[3 + j*4]

Interpreter
Context

GPU
Context

Figure 4.8: Interaction between interpreter and GPU during execution of loop statements.
Inter-kernel data access is through global GPU memory.

Awaiting runtime typing, untyped kernels are generated and cached during static analysis if
all the dependence relationships are ascertained at compile time. The corresponding host-
side driver code is also generated and cached. At runtime, reflection is used to infer the types
of each variable used by the cached kernels, JIT compiled using Numba (Section 2.1.4 and
3.2) and executed. Figure 4.7 shows how ALPyNA re-uses the cached ‘skeletal’ kernels to
save analysis time during dynamic analysis. It also provides a high level view of the runtime
loop-to-thread mapping within a kernel and the ‘driver’ code maintains the correct GPU
kernel invocation order.

If dependence analysis is deferred to runtime, the structure of the kernels and the ‘driver’
code could potentially change. This happens due to one or more of the following factors.
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• A loop which carries a dependence is mapped onto a sequentially executed loop in the
‘driver’ and executed by the VM. These loops will invoke calls to schedule dynami-
cally generated kernels on the GPU while maintaining dependence constraints. This
dependence structure may change due to runtime dependence analysis (Section 4.2).

• Mapping some loops to threads while executing other loops sequentially within a ker-
nel necessitates runtime mapping of parallel thread-ids to iterator values within the
array subscripts (Section 4.4.1 – GPU Thread Hierarchy).

• Statements with writes to a scalar require pass-by-reference semantics to preserve the
value of the scalar for reference within other GPU kernels as well as outside the scope
of the loop nest.

ALPyNA selects loops that can be safely parallelised and maps these parallel loops to parallel
threads. A loop execution instance of a statement is effectively executed as a GPU thread.
In CUDA, these parallel threads are mapped onto a three-dimensional thread domain space
(Section 2.3.2). The iterator of the original loop is mapped to a parallel GPU thread-id. The
thread-ids are dereferenced using CUDA (blockidaxis∗blocksizeaxis+threadid) semantics.
Current GPUs require a minimum number of threads to execute a kernel. This causes the
total number of threads to be rounded up to a multiple of the minimum number of threads.
To prevent an invalid access of memory by excess threads, the code generator inserts guard
conditions to prevent array dereferencing for threads along each parallel axis (Section 4.4.1 –
GPU Thread Hierarchy). The iteration domain sizes for each parallel hardware axis is passed
by-value to each executing kernel to check within the guard condition.

Outer loops that carry dependences are executed sequentially by the interpreter to schedule
kernels. To maintain dependence constraints, a kernel instance should know the exact loop
execution instance of the sequentially executed loop carrying the dependence. The iterator
value representing the loop execution instance of these sequential loops is also passed by-

value to the kernel function to ensure that dependence constraints imposed by loop-carried
dependences are maintained.

Listing 4.9 shows the kernel generated for the saxpy benchmark (Listing 4.7). As saxpy has
only one iteration domain, the size of this domain is passed by-value ( idx i iterdom max

– line 2). This size is used in the kernel guard condition (line 8) to prevent incorrect mem-
ory access to the vector from an excess number of threads that may execute due to thread
padding (Section 4.4.1). The array subscripts are a linear function (line 10) of the thread-id

(line 7).

ALPyNA generates the host side driver to schedule kernels while maintaining dependence
constraints discovered at runtime. Any loops carrying dependences for each statement are
transformed into loops invoking GPU kernels. Such sequential loops are executed by the
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Listing 4.9: GPU kernel code generated at runtime for saxpy (Listing 4.7)
1 @cuda.jit(’int64,uint32[:],uint32[:],int32’)
2 def _gpu_saxpy_lnest_000_206(constval, arr_x, arr_y, idx_i_iterdom_max):
3 bsize_x = cuda.blockDim.x
4 bid_x = cuda.blockIdx.x
5 tid_x = cuda.threadIdx.x
6
7 idx_i = bid_x * bsize_x + tid_x
8 if idx_i >= idx_i_iterdom_max :
9 return

10 arr_y[idx_i * 1] = constval * arr_x[idx_i * 1] + arr_y[idx_i * 1]

CPython VM. This enables ALPyNA to generate kernels which do not require the insertion
of synchronisation barriers.

Listing 4.10 shows the runtime host side driver generated by ALPyNA for the saxpy bench-
mark. The host side code (i) marshals and unmarshals data from ALPyNA’s auto-generated
closure (lines 3–5 and 19–22), (ii) transfers data (lines 10–11 and 16–17), (iii) sets up the
GPU context (line 7) and (iv) generates a thread-hierarchy according to the iteration domain
size (line 12).

Listing 4.10: GPU driver code generated at runtime for saxpy (Listing 4.7)
1
2 def _gpu_saxpy_lnest_000(arg_container, _timer):
3 arr_y = arg_container.arr_y
4 constval = arg_container.constval
5 arr_x = arg_container.arr_x
6 _idx_i_tfend_00_ = arg_container._idx_i_tfend_00_
7 stream = cuda.stream()
8 _timer.start_exec()
9 with stream.auto_synchronize():

10 _cvec_arr_y = cuda.to_device(arr_y,stream)
11 _cvec_arr_x = cuda.to_device(arr_x,stream)
12 _gpu_saxpy_lnest_000_206[(32768,), (1024,), stream](constval,
13 _cvec_arr_x,
14 _cvec_arr_y,
15 _idx_i_tfend_00_)
16 _cvec_arr_x.to_host(stream)
17 _cvec_arr_y.to_host(stream)
18 _timer.end_exec()
19 arg_container._idx_i_tfend_00_ = _idx_i_tfend_00_
20 arg_container.arr_x = arr_x
21 arg_container.constval = constval
22 arg_container.arr_y = arr_y

While parsing the AST during ALPyNA’s static analysis phase, all data variables that are
read from or written to are memoised and stored within the loop-landmark data structure
(Section 4.3.1). ALPyNA automatically generates commands to create and transfer vectors



4.4. Code Generation 73

to and from the GPU. These commands are hoisted out of the loop nest execution to prevent
unnecessary data transfer between each kernel invocation.

GPU Thread Hierarchy

In CUDA terminology, a group of threads on the GPU constitute a thread-block and a group
of thread-blocks constitute a grid. These thread groupings may be spread over one, two or
three dimensions. Each GPU has minimum and maximum threads-per-block and in some
cases, the maximum number of threads in one dimension may not be the same as others.

ALPyNA determines loop bounds statically by parsing the original code (Section 4.3.1) or
dynamically using introspection within the context of the closure that represents the loop
nest (Section 4.3.2). The bounds for each instantiation of a loop nest are determined by
introspecting the evaluation of the bounds expression at runtime.

Dependence analysis [70] determines which loops should be executed sequentially for each
statement. All other loops that envelope the original statement in the loop nest are executed
in parallel within a GPU kernel. Each iteration of a loop executed in parallel is mapped on
to a thread that can be calculated using a GPU’s (blockidaxis ∗ blocksizeaxis + threadid)

semantics.

ALPyNA matches the number of threads-per-block and blocks-per-grid based on device
specific constraints and the iteration domain sizes of a loop nest. Loop bounds for each
parallel loop enveloping a statement determine how many threads are required to execute
it in parallel. The loops that are determined to be safe to execute in parallel are sorted in
descending order of their iteration domain sizes. Each parallel loop is assigned to one of the
GPU’s thread axes, up to the maximum number of axes (three in modern GPUs) supported
by the device. Sorting the loops in descending order maximises the parallelisable iteration
domain space when the number of parallel loops is greater than the number of thread axes

supported by the GPU.

If the number of parallel loops is greater than the number of parallel axes allowed by the ac-
celerator, these loops are executed sequentially within each kernel. Correctness is preserved
as all the outer loops carrying dependences are executed sequentially in the interpreter. This
enables all inner loops to be executed in parallel without causing a dependence violation.

To calculate the CUDA thread hierarchy for each instantiation of a loop nest, an initial block
size equal to the iteration domain sizes of each parallel loop is generated. This allocation is
chosen if it fits in the maximum block size of the GPU device. If the number of threads is
greater than the maximum block size of the GPU, the number of threads along the largest
of the allocated parallel axes in a block is iteratively halved and padded to the minimum
number of execution threads required by CUDA. On NVIDIA GPUs, this is equal to the
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size of a single warp [102] – 32 in modern NVIDIA GPUs. This process is continued until
the block size is small enough to fit the GPU’s maximum block size. During each iteration,
the grid size along the corresponding axes is adjusted to match the reduction in the block

size. We converge on the grid and block sizes in
⌈
log2

(∏n
i=1 Di

B

)⌉
iterations where Di is

the the domain size of a loop allocated to execute in parallel, B is the maximum block
size supported by the GPU and n is the number of parallel thread axes allocated; e.g. a
1k × 1k domain size for Naı̈ve Matrix multiplication, would converge to a thread hierarchy
of (grid, block)→ ((32× 32), (32× 32)) within 10 iterations.

4.4.2 Runtime Type Patching

Dynamic languages such as Python resolve operand types at runtime. This complicates the
generation of GPU code as JIT compilation of such kernels require them to be compiled with
type information. Python3 provides support for type annotations which can be taken as a hint
for compilation; this is not enforced.

ALPyNA uses Numba as the backend compiler to compile kernels to binary form. Numba
can perform automatic runtime type evaluation to apply to each kernel immediately before
compilation. Automatic type inference occurs on every invocation of a kernel. This feature
can be bypassed by a programmer by providing the types for the Numba compiler to generate
a binary. Automatic type inference incurs an order of magnitude penalty in compilation time
compared to programmer defined types 1.

ALPyNA executes loops carrying dependences sequentially. Kernels in the loop body are
executed and dispatched for execution by Numba. When a kernel is invoked multiple times
sequentially, Numba’s automatic type inference is executed for each invocation. To reduce
the compilation overhead of Numba’s type inference, ALPyNA hoists type inference outside
the loop nest and supplies each generated GPU kernel with the required types. Listing 4.9
shows the typed GPU kernel generated at runtime for the saxpy benchmark (Listing 4.7).
Type-information is inferred at runtime using introspection and is added to the runtime gen-
erated kernel (line-1). Numba can still rely on cached kernels that are dereferenced by a
hash of the supplied kernel signature. This is reused in every kernel invocation within a
sequentially executed loop.

ALPyNA relies on Numba’s CUDA interface to serialise data and to transfer it to/from the
GPU. Numba only supports Numpy arrays that are already byte aligned in memory for the
array element type. For GPU kernels, Numba exposes bindings to CUDA intrinsics that map
to the GPU grid, block and synchronise programming primitives to the programmer. Numba
also exposes pure intrinsic functions [142] provided by CUDA for numerical computations.

1measured on the Desktop platform T2 specified in Chapter 5
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ALPyNA uses a one-to-one mapping of such functions to enable programmers to use them
within a loop nest.

GPU Scalar Marshalling

The effect of a write to a scalar variable within a loop body must be preserved for subsequent
reads. This is required both for uses of the variable in other kernels while executing on the
GPU as well as any use outside the scope of the loop nest.

However, GPUs do not support call-by-reference. Scalar writes within a kernel instance
are not visible beyond that kernel instance. To preserve its value for subsequent reads, a
scalar can be transferred as a unit-size vector to the GPU. Individual transfers of each such
scalar incurs a large cost due primarily to the large execution overhead of the device drivers
responsible for setting up any such transfer as well as the latency incurred for each individual
transfer across a peripheral bus such as PCIe.

To mitigate this overhead, ALPyNA performs runtime introspection to determine the type
required for each scalar variable that is written to. For scalar values that are to be offloaded
to the GPU, one composite array per type is dynamically assembled. This technique is simi-
larly employed in Tornado [46]. This composite array can be dereferenced within a runtime
generated GPU kernel using vector + displacement semantics. The closure representing the
loop nest unmarshalls each composite array back into the appropriate original scalar vari-
ables upon the completion of a loop nest execution.

4.5 Summary

This chapter presents the ALPyNA framework, a loop parallelisation framework for non-
expert programmers. It parallelises numerical computation expressed as dense Python loop
nests and automatically JIT compiles them for execution on CPUs and GPUs. The main
motivations behind the design are :

• dynamically maximise parallelisation: by exploiting dynamic analysis to determine
dependences and iteration domain sizes, code generation and and JIT compilation is
optimised to achieve greater levels of parallelism than possible in an entirely static
system.

• productivity: by showing that non-expert programmers need not be aware of the pre-
cise low-level programming paradigm that is required to program a GPU.

• extensibility: by being able to target multiple accelerators within a heterogeneous en-
vironment. ALPyNA is currently able to target CPU and GPU. ALPyNA’s HAL layer
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enables easy integration of other compilers targeting accelerators such as multicores
and FPGAs.

ALPyNA stages compilation by combining static and dynamic analysis for loop nests. The
static analysis phase parses loop nests, and decides to generate skeletal kernels or defer
analysis to runtime to obtain a more precise understanding of the dependence relationships
between memory accesses within statements in a loop nest. During dynamic analysis, loop
nests for which skeletal kernels have been generated are patched with types inferred by intro-
specting the Python runtime for the types and dimensionality. If the dependences cannot be
resolved during static analysis, dependence analysis is repeated at runtime. ALPyNA utilises
runtime introspection to determine runtime dependences. The precise runtime determination
of dependences enhances parallelisation opportunities compared to the conservative assump-
tions that have to be made during static compilation.

This chapter also describes the challenges and design decisions of generating and JIT compil-
ing CPU and GPU kernels to execute a loop nest in a dynamic language. ALPyNA generates
GPU kernels customised to the dependence relationships that emerge at runtime. A detailed
performance evaluation of ALPyNA is presented in Chapter 5.
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Chapter 5

Performance Evaluation of ALPyNA

Where Chapter 4 described the design of ALPyNA’s dynamic loop analysis framework, this
chapter evaluates the performance of JIT compiled code generated by ALPyNA. ALPyNA’s
performance is evaluated using 12 loop intensive numerical benchmarks on two CPU – GPU
systems; one is a server grade machine while the other is a desktop machine. Experiments
performed over a wide range of iteration domain sizes point to differing optimal target exe-
cution devices for different domain sizes. ALPyNA’s JIT compiled GPU code achieves or-
ders of magnitude speedup relative to interpreter execution across all benchmarks and some
speedup (up to 179x) relative to the JIT compiled CPU execution for some benchmarks.

Section 5.1 describes the benchmarks and their characteristics that exercise various features
of the ALPyNA framework. Section 5.2 describes the hardware and software setup used
to evaluate the benchmarks. Section 5.3 describes the methodology used in the evaluation.
Section 5.4 compares the runtime performance of the benchmarks on two CPU–GPU plat-
forms. Performance of the loop nest variant for the CPU and the GPU is compared with
the interpreter. The performance of the GPU is also compared with the CPU. The results
are tabulated for both platforms. Section 5.5 discusses the overhead required to analyse and
compile code at runtime. Finally Section 5.6 summarises the chapter.

5.1 Benchmarks

ALPyNA is evaluated using 12 loop-intensive benchmarks taken from the BLAS routines
in the Polybench suite [113], the Numba benchmarks, and from domains such as finance
(Black-Scholes) and digital signal processing (filterbank correlation – fbcorr). The bench-
marks represent a variety of characteristics that test ALPyNA’s dynamic runtime loop paral-
lelisation capabilities. These benchmarks have been used widely to evaluate parallelisation
in runtime systems (e.g. [36, 46, 115, 126]).
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Benchmark
Loop Depth

Statements
Control Flow
Divergence

Pure Intrinsic
FunctionsTotal

Loops
Parallel
Loops

black-scholes 1 1 12 3 3

conv-2d 4 2 1 7 7

conway 2 2 2 7 7

gemm 3 2 1 7 7

gemver (2,2,1,2) (2,1,1,1) 4 7 7

hilbert 2 2 1 7 7

jacobi 2 2 2 7 7

mandelbrot 3 2 3 3 3

saxpy 1 1 1 7 7

syr2k (2,3) (2,2) 2 7 7

vadd 1 1 1 7 7

fbcorr 7 4 1 7 7

Table 5.1: Benchmark characteristics described by the number of loops surrounding each
statement. Imperfect loops are depicted by showing the number of loops that surround each
statement in the body of the loop nest e.g. syr2k has two loops around the first statement and
three around the second. Only some loops are parallelised.

These benchmarks range from extremely simple loops to moderately complex loops. The
simplest loops are single loops, containing just a single statement, which are embarrassingly
parallel. Moderately complex loop nests contain both perfect and imperfect loop nests. The
benchmarks include loop nests containing loop carried dependences. These dependences
have to be satisfied by executing loops carrying dependences sequentially while parallelising
the other loops. Two benchmarks contain control flow divergence and calls to pure intrinsic
functions within the body of the loop nests. Pure intrinsic functions are supported by the
hardware which the compiler can inline. Such functions are deterministic functions that (i)

depend on their own arguments, (ii) do not change variables out of their scope and (iii) do
not produce side effects [142]. Table 5.1 summarises the features of each benchmark by the
number of loops that dominate the loop body and how many of these loops have loop carried
dependences. Such dependences force sequential execution of the loops that carry the de-
pendence to maintain correctness. On the GPU, this translates to loops carrying dependences
executing sequentially in the interpreter. These sequential loops schedule kernels executing
inner parallel loops.

When a multidimensional array is de-referenced in the CPython interpreter, Python generates
a new object from a sub-slice of the original vector for every subscript dereference. Both
Python lists as well as Numpy arrays exhibit this behaviour. Programmers can override
this behaviour in Numpy arrays by representing all array dereference expressions as a tuple
within a single subscript [99]. To ensure that the additional overhead of object generation
does not skew the results in favour of JIT compiled CPU and GPU compiled versions of the
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loop nest, all multi-dimensional array subscripts in the benchmarks are re-written using tuple
notation.

black-scholes implements an option pricing model [26] to calculate prices of derivative
financial instruments. It uses various mathematical pure intrinsic functions on each stock
price and exhibits control flow divergence with forward branches (cf. Section 4.3.1). The
single loop only exhibits loop independent dependences within the body of the loop nest
allowing ALPyNA to parallelise the whole loop body.

conv-2d convolves an N ∗N matrix with an M ∗M kernel represented as

y[m,n] =
∞∑

j=−∞

∞∑
i=−∞

x[i, j]× h[m− i, n− j]

This is a quadruple nested loop with an M ∗M ∗ N ∗ N iteration domain. The loops with
dimensions M ∗M must be executed sequentially, while the loops along the N ∗N domain
can be parallelised.

conway: “Conway’s Game of Life” [51] is a zero-player game on a 2D board, representing
a cellular automaton. Each element is either alive or dead. At each turn, elements are born,
survive, or die, based on neighbour elements’ state from the previous turn. This benchmark
is the core of the survival calculation, representing a single turn in the game. Effectively, it
is a stencil computation across a 2D integer matrix.

gemm is an implementation of the standard O(n3) dense matrix multiplication algorithm.
The loops iterate over the rows and columns of the two-dimensional matrices. The absence
of one of the iterators in the access pattern of any subscript of the output matrix generates all
three dependence types on the multiply-accumulate statement. This requires the inner k-loop

to be executed sequentially while allowing the outer i- and j-loops to be executed in parallel.

gemver is a BLAS [1] routine from the Polybench [113] suite. The mathematical calcula-
tion is:

Â = A+ u1.v1 + u2.v2

x = βÂTy + z , w = αÂx

where the inputs are A (N ∗N matrix), α, β (scalars) and u1, u2, v1, v2, y, z (vectors each of
size N ). The benchmark consists of four separate loop nests, each with a single statement.
All the statements have loop-independent dependences between them. This benchmark has
a 1D loop and three 2D loops. One 2D loop can be parallelised across both dimensions.
The other two 2D loops do not reference iterators from one of the loops. This causes both
a loop carried dependence (δ) and an anti-dependence (δ−1) carried by the loop generating
the un-referenced iterator as well as a loop independent dependence (δ∞) on itself. In effect,
this acts as a reduction along one axis inducing all three dependence types along that axis.
These loops can be parallelised across the remaining axes.
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hilbert computes a 2D matrix used in linear algebra approximation problems. It is calculated
as:

Hi,j =
1

i+ j − 1

The computation is represented as a 2D loop that only writes to a single vector.

When JIT compiled targeting either CPU or GPU, The binary instructions generated by JIT
compilation do not require loads from memory while performing the compuation. Memory
is accessed only for memory stores.

jacobi is an iterative algorithm to solve a set of linear equations, expressed as a vector
product equation. Initial guesses for the solution are plugged into a vector representation.
The terms are solved iteratively until the algorithm converges to a solution. This benchmark
is the core of the iteration step, a doubly nested loop to compute the next value and the error
value for each element in the 2D matrix. The loop nest consists of a perfect loop nest with
two loops and two statements. A loop independent true-dependence (δ∞) between the two
statements ensure that every instance of the second statement within the loop will only occur
after the corresponding instance of the first statement is executed. Both loops are parallelised
and can be executed on the GPU.

mandelbrot is a kernel that computes zn+1 = z2n + c, where z, c are complex numbers with
the initial value z = 0. The loop nest is implemented as a triply nested loop. A loop carried
true (δ) and anti (δ−1) dependence along with a loop independent true-dependence (δ∞)
exists for all three statements. These dependences are carried by the outer loop enabling
parallel execution of the inner loops. A loop carried as well as loop independent output
dependence (δo) exists between two of the three statements. Two statements are conditionally
executed which triggers ALPyNA’s if-conversion pass.

saxpy is single-precision AX plus Y. This benchmark combines scalar multiplication and
vector addition on two equally sized arrays of 32-bit floating point values. Mathematically,
the computation is represented by α~x+ ~y

syr2k is a BLAS [1] routine from the Polybench [113] suite. It computes

Cout = αABT + αBAT + βC

where A,B,C are N ∗ N matrices, and α, β are scalars. Dependence analysis generates one
statement that can be parallelised along two loops and a second statement with a loop-carried
dependence along one axis that runs sequentially and is parallelisable across the other two
axes.

vadd performs element-wise addition of a pair of 1d vectors. The vector sizes are varied
between 1KB to 16MB. The iteration domain size is proportional to the vector length.
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fbcorr is the filterbank correlation benchmark, used in signal and image processing to clas-
sify features. The implementation has seven nested loops of which three must be run in
sequential order. The other four loops can be executed in parallel. Current GPU hardware
only supports three hardware axes. Since all dependences are carried by the sequentially
executing loops, ALPyNA’s optimisations will sort the parallel loops in descending order of
the iteration domain sizes at runtime. The loop with the smallest loop domain size amongst
the parallel loops is executed sequentially within each parallel thread.

5.2 Experimental Setup

5.2.1 Hardware

ALPyNA’s performance is evaluated on two machines; a server grade machine (M1) and a
typical desktop setup (M2). M1 has a Xeon E5-2620v4 octa core CPU with a 20MB L3
cache and a clock frequency of 2.1GHz that can be ‘Turboboost’ed to 3GHz. It has 16GB
(2× 8GB) DDR4 RAM with a memory bus speed of 2133MHz.

M2 has a Core i7-6700 quad core CPU with an 8MB L3 cache clock and a clock frequency of
3.4GHz, that can be boosted to 3.9GHz. It has 16GB DDR4 (2× 8GB) RAM with a memory
bus speed of 2133MHz.

M1’s GPU is an NVIDIA Titan-XP (GP102) with a clock frequency of 1.4GHz and 12GB
of GDDR5 RAM. It has 30 Streaming Multiprocessors (SMs) and a 3MB last level cache
(L2). M2 has an NVIDIA GeForce GTX-1060 (GP104) with a clock frequency of 1.5GHz
and 3GB of GDDR5 RAM. It has 9 SMs and a 1.5MB L2 cache. The GP102 and GP104
microarchitectures use SMs that have 128 CUDA cores. These are simple cores that execute
together as warps. The GP102 and GP104 SMs have a warp size of 32. Each SM has four
warp schedulers. This enables four warps of 32 cores to be executed simultaneously. Each
SM has two L1 caches [133]. Data transfer occurs over a PCIe 3.0 bus. The GPUs on both
M1 and M2 have exclusive use their respective PCIe bus. Both GPUs negotiated to use all
16 available channels (x16) on their respective machines.

5.2.2 Software

Both machines M1 and M2 have similar software stacks. M1 runs a native x86–64 Linux
kernel v4.15. The Python interpreter that executes ALPyNA is CPython 3.6.9. Numpy
1.13.3 is used on M1 for the array data structures. The CPU and GPU are compiled using
Numba v0.34. Numba internally relies on CUDA v8.0.61.
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The Linux kernel executing on M2 is a native x86–64 Linux kernel (v4.9). CPython 3.5.3
is used with Numpy 1.13.3. Compilation and GPU execution is performed by Numba 0.33.
Numba in-turn relies on CUDA v8.0.44 for compiling GPU code. We identify the combined
hardware and software stacks as target platforms T1 and T2 throughout the rest of this thesis.

5.3 Methodology

To assess the effectiveness of loop parallelisation, ALPyNA is evaluated on 12 widely used
array-intensive benchmarks. These benchmarks are written as nested Python loops in an
array-centric format with variable loop domains, to exercise ALPyNA’s runtime analysis
execution path. ALPyNA’s effectiveness is evaluated by measuring the time taken for :

• dependence analysis and CPU and GPU kernel generation.

• CPU and GPU kernel compilation.

• execution time of the CPU and GPU kernel variants.

For the purposes of evaluation, ‘execution time’ on an accelerator is the time taken to transfer
data back and forth between the host and the accelerator and finish the execution of the entire
computation represented by a loop nest. From the programmers point-of-view, a comparison
of ALPyNA’s performance is made by comparing the effective ‘total execution’ time of the
JIT compiled CPU and GPU variants vs the CPython interpreter. The total execution time
includes the time taken for analysis, compilation and execution time.

To profile a wide range of domain sizes for each benchmark the iteration sizes of each loop
is doubled (geometrically increasing). Each benchmark has been executed 5 times and the
arithmetic mean of the measured values is reported. ALPyNA is capable of automatically
choosing a target device to execute an instance of a loop nest using a cost model (Chapter 6).
For this evaluation, this automatic selection was disabled and a target device was explicitly
chosen to obtain measurements. Each benchmark is executed (i) using the CPython inter-
preter, (ii) a CPU variant, and (iii) a GPU variant of the loop nest. All benchmark executions
are set to timeout after three hours. This resulted in timeouts during the execution of the
largest iteration domain sizes of fbcorr and syr2k by the interpreter. The execution times
between each experimental run ranged from a maximum of +/-5% for small iteration domain
sizes to negligible variances for larger domain sizes.
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Figure 5.1: Total execution time of ALPyNA generated code on the CPU and GPU vis-
a-vis the CPython VM on Platform T1 (Lower is better). Times are scaled logarithmically.
Total execution time includes analysis and code generation, compilation, and execution time.
Interpreter execution times for the largest two domains of syr2k (2k×2k and 4k×4k) timed
out after 3 hours. Results summarised in Table 5.3.
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5.4 Performance Comparison

The effectiveness of ALPyNA’s runtime parallelisation and code generation is evaluated by
measuring execution times and relative speedups. Figure 5.1 plots CPython and ALPyNA
CPU and GPU runtimes over a large number of iteration domains. The sizes shown on
the x–axis on all benchmarks (apart from fbcorr) is the size of the largest vector on which
the computation is performed. For example, naive matrix multiplication (gemm) of two
64 × 64 matrices is shown in Figures 5.1, 5.2, 5.3, 5.4 and 5.5 as 64 × 64. For fbcorr,
the iteration domain size is depicted as (number of images)x(number of filters)x(2-D image
size). For example, the smallest iteration size (16 × 8 × 256 × 256) was performed on
16 images with 8 filters and each image is (256 × 256) pixels in size. The domain sizes
on the x–axis are depicted on a logarithmic scale. To account for the orders of magnitude
difference in execution times between the CPython interpreter and the CPU and GPU kernels
that ALPyNA generates, the time axis is also logarithmic. All relative execution time graphs
and tables shown in this chapter pertain to platform T1. Graphs and tables corresponding to
platform T2 are provided in Appendix A.

Numba caches JIT compiled kernels to reduce compilation times. To compare the effective-
ness that adoption of ALPyNA might have in the real world, the performance of the CPython
interpreter is compared with the total time taken to complete execution of the loop nest on a
cold run. This includes the overhead of analysis and compilation, as well as actual execution

of CPU and GPU kernels. Execution times of the GPU are inclusive of data transfer time.

5.4.1 Comparison of ALPyNA CPU Variant with CPython Inter-
preter Execution

Table 5.2 reports the minimum, maximum, and arithmetic mean speedup achieved by the
CPU variant of each benchmark over the corresponding execution by the CPython interpreter
on platform T1. The CPython interpreter executes faster than the JIT compiled CPU variant
for the smallest domain sizes. At smaller dimension sizes, the worst relative performance
of the CPU variant occurs for the jacobi (0.0003x) and hilbert (0.001x) at their smallest
iteration sizes – (16× 16), (4× 4) and (8× 8) respectively. The largest maximum speedup is
achieved for syr2k (1199.95x) at (1K× 1K), saxpy (934.84x) at (32M) and gemm (925.27x)
at domain size (2K×2K). The interpreter variant of syr2k timed out for the larger execution
sizes (2k × 2k and 4k × 4k).

Similarly, columns 2–4 of Table A.1 report minimum, maximum and arithmetic mean speedups
by the CPU on platform T2. The hilbert (0.001x), jacobi (0.0002x) and gemver (0.002x)
benchmarks are the slowest at their respective smallest domain sizes The maximum speedup
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Benchmark
JIT CPU vs CPython

Benchmarks
JIT CPU vs CPython

min max mean min max mean

black-scholes
0.89 47.58 17.57

hilbert
0.001 53.25 8.95

(32K) (16M) (16 x 16) (4K x 4K)

convolution-2d
0.015 888.31 222.05

jacobi
0.0003 116.94 15.23

(16 x 16) (16K x 16K) (4 x 4) (2K x 2K)

conway
0.006 31.85 6.07

mandelbrot
0.26 285.90 98.48

(16 x 16) (1K x 1K) (8 x 8) (512 x 512)

fbcorr
159.91 371.44 272.06

saxpy
0.053 934.84 125.03

(16x16x256x256) (16x8x1Kx1K) (1K) (32M)

gemm
0.029 925.27 282.43

syr2k
0.019 1199.95 346.17

(16 x 16) (2K x 2K) (8 x 8) (1K x 1K)

gemver
0.003 645.83 137.25

vadd
0.008 63.32 10.33

(8 x 8) (16K x 16K) (1K) (16M)

Table 5.2: Speedup of JIT compiled CPU loop nest variant relative to CPython interpreter
execution on platform T1. Iteration sizes corresponding to each data points are shown in
brackets.

on platform T2 is observed for gemver (3859.98) at a size (16K × 16K) and for syr2k

(1290.19x) at a size (1K × 1K).

For all benchmarks, ALPyNA’s analysis and compilation time dominate execution time for
smaller domain sizes. At a large enough domain size threshold, the JIT compiled CPU
variant becomes faster than the interpreter. Figures 5.1 and A.1 show the increasing speedups
on platforms T1 and T2 for all benchmarks as domain sizes increase.

5.4.2 Comparison of ALPyNA GPU Variant with CPython Inter-
preter Execution

Columns 2–4 of Table 5.3 report minimum, maximum, and arithmetic mean speedup achieved
by the GPU variant of each benchmark over the corresponding execution by the CPython in-
terpreter on platform T1. For the smallest domain sizes, the CPython interpreter is faster
than the GPU variant. The lowest speed-ups are achieved for the hilbert (0.0001x) and ja-
cobi (0.0007x) benchmarks at the tiny domain sizes of (4 × 4) and (16 × 16) respectively.
The largest maximum speedup is achieved for syr2k (16435x) at (1K × 1K).

Similarly, columns 2–4 of Table A.2 report minimum, maximum and arithmetic mean speedups
by the GPU on platform T2. The hilbert (0.001x), jacobi (0.002x) and gemver (0.002x)
benchmarks are the slowest at their respective smallest domain sizes (16 × 16, 4 × 4 and
8 × 8). The maximum speedup on platform T2 is observed for syr2k (13895x) at a size
(1K × 1K).

The results for the two largest iteration domains for syr2k have not been included due to
our experimental set-up timing out. The diverging execution times of the interpreter and the
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Benchmark
Relative speedup

ALPyNA GPU
vs CPython

ALPyNA GPU
vs CPU JIT

min max mean min max mean

black-scholes
0.19 51.85 12.33 0.22 3.87 0.46
(32K) (16M) (32K) (16M)

convolution-2d
0.013 3439.31 592.42 0.82 3.87 1.40
(16x16) (16Kx16K) (256x256) (16Kx16K)

conway
0.003 19.29 3.67 0.58 0.61 0.6
(16x16) (1Kx1K) (16x16) (64x64)

fbcorr
1427.84 3082.90 2283.3 4.64 16.49 10.49

(16x8x256x256) (16x8x1Kx1K) (16x8x256x256) (16x16x1Kx1K)

gemm
0.021 6621.08 1274.87 0.58 7.15 1.96
(16x16) (2Kx2K) (64x64) (2Kx2K)

gemver
0.001 702.22 100.66 0.37 1.08 0.52

(8x8) (16Kx16K) (2Kx2K) (16Kx16K)

hilbert
0.0007 34.5 5.62 0.43 0.72 0.56
(16x16) (4Kx4K) (32x32) (512x512)

jacobi
0.0001 53.94 7.11 0.42 0.52 0.46

(4x4) (2Kx4K) (4x4) (16x16)

mandelbrot
0.08 870.61 153.73 0.29 3.09 0.76
(8x8) (1Kx1K) (16x16) (1Kx1K)

saxpy
0.02 435.6 62.15 0.35 0.67 0.46
(1K) (32M) (256K) (16M)

syr2k
0.012 16435.68 2471.3 0.53 179.55 30.11

(8x8) (1Kx1K) (32x32) (4Kx4K)

vadd
0.003 30.37 5.04 0.41 0.7 0.49

(1K) (16M) (32K) (64K)

Table 5.3: Speedup of ALPyNA GPU kernels relative to CPython interpreter execution and
CPU JIT compiled loop nest on Platform T1. The iteration size for each data point is shown
in brackets.

GPU as shown in Figures 5.1 and A.1 suggest that GPU speedups will increase exponentially
until performance levels off when the GPU is heavily saturated with execution threads.

Figures 5.1 and A.1 show that for all the tested benchmarks, above a threshold iteration
domain size, GPU execution becomes profitable. At the smallest domain sizes, the GPU
performance lags behind CPython interpreter performance. Below the crossover thresholds,
analysis and compilation time dominates the GPU execution time (Section 5.5).

All benchmarks executed on the CPython interpreter on platforms T1 and T2 were observed
to run at their maximum CPU frequency of 3.0 GHz and 3.9 GHz respectively throughout
the duration of execution. This is due to the CPython interpreter running in single-threaded
mode needing only one CPU core to be fully utilised and leaving the others idle. Thus no
throttling of the CPU due to potential thermal issues was observed.
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5.4.3 Comparison of ALPyNA GPU Variant with JIT compiled
CPU Variant

Figures 5.1 and A.1 show a clear and increasing relative speedups for ALPyNA’s GPU vari-
ants compared to the CPython interpreter across all benchmarks for platforms T1 and T2.
However, the same trend cannot be clearly established for the speed-up of the GPU variant
relative to the CPU variant. Figures 5.2 and A.3 show execution time (i.e. without analysis
and compilation time) for CPU and GPU code generated by ALPyNA for platforms T1 and
T2.

The results in columns 5–7 of Table 5.3 report the minimum, maximum and arithmetic mean
of total execution speed-ups over the JIT compiled CPU variant. These results are classified
into groups, based on relative execution speedups observed and amount of computation to
be executed. This occurs either due to a large number of statements within a loop nest, data
transfer overhead, or the repeated execution of parallel kernels within a loop nest by an outer
loop executing sequentially.
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Figure 5.2: Execution time of ALPyNA generated code on the CPU vs the GPU on Platform
T1 (Lower is better). Times are scaled logarithmically. CPU execution time for the largest
domain of syr2k (4k × 4k) is omitted to better represent execution times of smaller domain
sizes.

Light parallel workloads are loop nests with small amounts of work to be done within
the body of the parallelisable loop. Benchmarks such as saxpy, conway, hilbert, jacobi,
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gemver and vadd fall into this category. The analysis, compilation and data transfer over-
head incurred by ALPyNA to execute on the GPU is consistently greater than compiling and
executing the benchmark on the CPU. The relative speedup observed on both platforms T1

and T2 remains constant for increasing iteration sizes as shown in Figure 5.1 and A.1 respec-
tively. The maximum speed-up of total execution time for these benchmarks ranged from
0.52x – 1.08x on T1 and 0.83x – 1.1x on T2.

Heavy parallel workloads are workloads where the per-loop work is substantial. The
performance boost that can be obtained from these kernels is substantial despite the data
communication overhead of the GPU. Kernels such as black-scholes, conv-2d, gemm, man-

delbrot, fbcorr and syr2k show significant speedup at much lower iteration domain sizes.
fbcorr is classified as a heavy parallel workload, due to the consistent speedups obtained
over the JIT-compiled CPU variant. This is due to the kernel being able to run four out of its
seven loops in parallel and execute these faster than the CPU for a range of data sizes. For
these benchmarks, speedups will continue to increase with iteration domain size until GPU
memory is exhausted. The maximum speed-up of total execution time for these benchmarks
ranged from 3.09x – 179.55x on T1 and 1.12x – 50.68x on T2.

The CPU variants of all benchmarks were compiled by Numba to execute in single threaded
mode. The CPU variants were able to run at their maximum CPU frequency of 3.0 GHz
and 3.9 GHz respectively throughout the duration of execution without any throttling of the
CPU. The JIT compiled GPU variants are also observed to execute on T1 and T2 at their
rated clock frequencies.

5.4.4 Comparison of ALPyNA GPU code with hand-written GPU
code

Figure 5.3 shows the performance of ALPyNA’s generated GPU code compared to hand-
written GPU benchmarks on platform T1. The hand-written kernels are compiled using
Numba. The comparison is performed for four benchmarks namely, conway, gemm, mandel-

brot and vadd. According to the classification in Section 5.4.3, conway and vadd are light
parallel workloads while gemm and mandelbrot are heavy parallel workloads. Amongst these
benchmarks, the maximum slowdown of ALPyNA’s generated GPU code relative to the
hand-written code across all input domain sizes is 1.9x (conway) for light parallel workloads
and 54.09x (mandelbrot) for heavy workloads. These slowdowns point to the possibility of
additional performance gains through further optimisation.
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Figure 5.3: Comparison of ALPyNA generated GPU code with hand written GPU kernels
on Platform T1. Lower is better.

5.4.5 Comparison of ALPyNA GPU code with other solutions

Section 3.3.1 discusses prior work in the area of automatic loop parallelisation in Python
targeting accelerators such as GPUs and FPGAs. This includes Megaguards [115] and Three-
Fingered-Jack (TFJ) [127, 128].

Megaguards is built on top of ZipPy which is a Python interpreter built on top of the JVM,
while ALPyNA uses the standard CPython interpreter along with the Numba JIT compiler.
In the presence of cross-loop iterations, Megaguards will JIT compile the loop nest for the
CPU. However ALPyNA can generate parallel code for inner loops by sequentially execut-
ing outer loops that carry dependences. Benchmarks used to evaluate the performance of
ALPyNA (Section 5.1) which contain cross loop iterations include conv-2d, gemm, gemver,

mandelbrot,syr2k and fbcorr. While TFJ vectorises code for FPGAs and for CPUs with
SIMD extensions, it does not generate GPU kernels. It also does not generate parallel kernels
for loop nest bodies with control flow divergence. Benchmarks with control flow divergence
used for the evaluation of ALPyNA include mandelbrot and black-scholes. Due to these rea-
sons, these systems cannot be directly compared and hence a performance comparison has
not been performed.



90 CHAPTER 5. PERFORMANCE EVALUATION OF ALPYNA

32K 64K 128K256K512K 1M 2M 4M 8M 16M
0.0

0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

black-scholes
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

16 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K2K x 2K4K x 4K8K x 8K

16K x 16K
0.0

0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

convolution-2d
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

16 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K

0.0
0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

conway
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

16x8x256x256
16x16x256x256

16x8x512x512
16x16x512x512

16x8x1Kx1K
16x16x1Kx1K

0.0
0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

fbcorr
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

16 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K2K x 2K

0.0
0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

gemm
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

8 x 816 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K2K x 2K4K x 4K8K x 8K

16K x 16K
0.0

0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

gemver
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

16 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K2K x 2K4K x 4K

0.0
0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

hilbert
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

4 x 4 8 x 816 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K2K x 2K

0.0
0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

jacobi
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

8 x 8 16 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K

0.0
0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

mandelbrot
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

1K 2K 4K 8K16K32K64K128K256K512K1M2M4M8M16M32M
0.0

0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

saxpy
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

8 x 816 x 1632 x 3264 x 64
128 x 128

256 x 256
512 x 5121K x 1K2K x 2K4K x 4K

0.0
0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

syr2k
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

1K 2K 4K 8K16K32K64K128K256K512K1M 2M 4M 8M16M
0.0

0.25
0.50
0.75
1.00

tim
e 

(n
or

m
)

vadd
CPU-analysis
CPU-compilation

CPU-execution
GPU-analysis

GPU-compilation
GPU-execution

Figure 5.4: Proportion of time spent by ALPyNA for analysis, compilation and execution on
JIT compiled CPU and GPU code on Platform T1.

5.5 Analysis and Compilation Overhead

Section 5.4 establishes that for small domain sizes, interpreter execution is faster than either
CPU or GPU variants of a loop nest. However the threshold domain sizes at which it is
advantageous to execute JIT compiled code on either the CPU or GPU is small.

Figures 5.4 and A.2 show the relative time spent by ALPyNA for analysis, compilation
and for execution of the benchmarks on platforms T1 and T2 respectively. Table 5.4 and
A.3 present the time overhead incurred by ALPyNA for analysis and compilation on plat-
form T1 and T2 respectively. The runtime analysis and code generation component includes
ALPyNA’s runtime dependence analysis, cost modelling and code-generation for the se-
lected device for JIT compilation. The mean values for analysis and code generation range
from 1ms (vadd,saxpy) – 280ms (black-scholes) for CPU code generation on T1. The
corresponding mean values for the GPU on T1 ranged from 1ms (vadd) – 304ms (black-

scholes). On platform T2, the mean values for analysis and code generation took between
1ms (hilbert) and 509ms (black-scholes) for the CPU and, between 1ms (hilbert) and 543ms
(black-scholes) for the GPU.

Compilation of generated code by Numba takes significantly longer than ALPyNA’s analysis
and code generation phase. Compilation took a maximum of 384ms and 1.84sec for the
black-scholes benchmark on the CPU and GPU respectively. On T2, compilation of code
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took upto 321ms and 992ms for the CPU and GPU. For each benchmark, these values are
consistent across domain sizes. The variability of the compilation times for both CPU and
GPU was +/- 10%.

Benchmark
ALPyNA analysis + runtime code generation (sec) Compilation (sec)

CPU GPU
CPU GPU

min max mean min max mean
black-scholes 0.034 0.616 0.280 0.046 0.682 0.304 0.384 1.847
convolution-2d 0.004 0.079 0.028 0.005 0.063 0.029 0.153 0.167
conway 0.006 0.007 0.006 0.006 0.007 0.007 0.194 0.330
fbcorr 0.008 0.101 0.056 0.012 0.118 0.061 0.222 0.208
gemm 0.002 0.005 0.004 0.003 0.006 0.004 0.114 0.154
gemver 0.010 0.157 0.074 0.013 0.164 0.081 0.252 0.525
hilbert 0.001 0.002 0.002 0.002 0.002 0.002 0.072 0.134
jacobi 0.004 0.004 0.004 0.004 0.005 0.004 0.143 0.312
mandelbrot 0.006 0.028 0.017 0.007 0.029 0.018 0.173 0.556
saxpy 0.001 0.002 0.001 0.001 0.002 0.002 0.057 0.122
syr2k 0.005 0.069 0.022 0.006 0.068 0.027 0.191 0.298
vadd 0.001 0.001 0.001 0.001 0.002 0.001 0.061 0.122

Table 5.4: Analysis and code generation time taken by ALPyNA for CPU and GPU on
Platform T1.

Figure 5.5 shows the increase in total analysis and compilation time for each benchmark
for various domain sizes. While compilation time remains constant across all domain sizes,
analysis and code generation time increases as the domain sizes increase. The increase in
analysis time occurs due to the increased convergence time required for the thread hierarchy
calculation (described in Section 4.4.1 – GPU Thread Hierarchy) for larger domain sizes.
This calculation is performed before the code is generated so that the ALPyNA Cost Model
(Chapter 6) can inform the selection of an optimal target device for compilation.

5.5.1 Static Analysis overhead

ALPyNA’s warm-up phase for each benchmark is measured to demonstrate the low over-
head of static analysis. Figure 5.6 shows an overhead of around 0.1s for all benchmarks on
platform T2. The black-scholes analysis takes the longest amount of time; there are a total
of 66 subscript pairs (49 cross and 17 output variable subscript pairs) to analyse amongst 13
lines of code in the target loop nest. Conditional code within the loop body creates com-
piler generated predicate variables due to if-conversion which increases the time to do static
analysis.
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Figure 5.5: ALPyNA runtime analysis and compilation overhead (Platform T1).

Figure 5.6: ALPyNA static analysis times for each benchmark on Platform T2.
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5.6 Summary

This chapter evaluates the performance of ALPyNA’s dynamic dependence analysis and loop
parallelisation for CPUs and GPUs. The results show that dynamically generating CPU and
GPU variants of data parallel Python loop nests is not only viable but also profitable.

ALPyNA’s runtime capabilities are evaluated using 12 loop intensive benchmarks. These
benchmarks vary in complexity from single-loop single-statement loop nests that are embar-
rassingly parallel to more complex benchmarks containing multiple statements, loop carried
dependences, imperfect loop nests, control flow divergence and calls to pure intrinsic func-
tions.

The benchmarks are measured on two CPU – GPU systems (Section 5.2). One platform (T1)
is a server grade machine and the other (T2) is a typical desktop setup. Between these two
systems, over 240 data points were collected for the 12 benchmarks. Section 5.4 shows that
once the overheads of analysis and compilation are overcome, large speedups are achieved
for the JIT compiled CPU (max 1290x) and GPU variants (max 16435x) relative to the inter-
preter. The gradient of the relative performance also consistently increases with increasing
domain ranges.

Section 5.5 measures the overheads of runtime analysis, cost modelling, code generation
and compilation. The compilation times were slightly higher for the GPU (0.069 – 1.847
seconds) compared to the CPU (0.045 – 0.384 seconds). Compilation of generated code is
observed to be constant for each benchmark. Runtime dependence analysis, cost modelling
and code generation takes between (0.001 – 0.5 seconds) on the CPU and (0.001 – 0.54
seconds) for the GPU. Although analysis time increased for larger domain sizes, compilation
time dominated analysis and code generation time.

Analysis of the relative performance of the JIT-compiled GPU kernels vis-à-vis the JIT-
compiled CPU version reveals two kinds of workloads (light and heavy) characterised by
the amount of total parallel computation in the loop nest. The evaluation reveals a relative
speedup ranging from 0.22x for light workloads (i.e. a slowdown) up to 179.55x for heavy

workloads. Within the distribution of iteration domains for each benchmark, light workloads
are consistently faster on the CPU. For heavy workloads, the CPU is generally faster at lower
iteration domain thresholds while the GPU executes faster at higher iteration domains.

The performance evaluation of ALPyNA’s runtime code generation and execution shows
that execution by the interpreter is fastest for small iteration domain sizes while the JIT
compiled version is faster for large input sizes when execution time dominates the analysis
and compilation overhead. The GPU executes loop nests with heavy parallel workloads
faster than the CPU.
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However we cannot naı̈vely always expect a speedup from a GPU JIT compiler, even when
all the loop instances can be executed in parallel. This suggests the need for a dynamic cost

model to guide the selection of the optimal target device for the execution of a loop nest in a
heterogeneous environment. Chapter 6 will introduce and evaluate such a cost model.
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Chapter 6

The ALPyNA Cost Model

ALPyNA auto-parallelises loop nests for GPU execution in Python, a dynamic language.
Auto-parallelising compilers are common for static languages. They often use cost models
to determine when GPU execution is likely to be faster and whether this will be be enough
to outweigh offload overheads. Cost models for JIT compilation and parallelisation of dy-
namic languages [10, 98, 110] concentrate on CPU acceleration. However, few cost models
currently exist for JIT compilation of dynamic languages in CPU–GPU environments.

ALPyNA can deliver significant speedups if the analysis and compilation overheads are
amortised over the whole iteration domain range. However, relative performance between
the CPU and the GPU reveals the need for a more nuanced approach to selecting the optimal
target device to execute a loop nest computation (Section 5.4.3).

This chapter presents an analytical cost model for auto-parallelising loop nests in a dynamic
language such as Python on heterogeneous architectures. Predicting execution time in a
language like Python is relatively complicated since aspects like the element types, size of
the iteration space, and amenability to parallelisation can only be determined at runtime. To
achieve optimised parallel code, ALPyNA stages dependence analysis and code generation
between compile time and runtime. To reflect ALPyNA’s architecture, the cost model is also
staged.

Section 6.1 presents the motivations behind the cost model for ALPyNA and the factors
that inform its development. Section 6.2 systematically develops the ALPyNA Cost Model
(ACM) which guides the selection of a target device for JIT compilation. Section 6.3 eval-
uates the accuracy of ACM using two measures – misprediction penalty and misprediction

range. Finally Section 6.4 summarises the chapter and its main contributions.



96 CHAPTER 6. THE ALPYNA COST MODEL

Parser

Python
loop nests

Static 
Dependence 

Analysis

Parallelisation

Statically derived 
parallelisable
loop structure

ALPyNA API

Static Analysis (Warm-up phase) Runtime (Execution Phase)

User
executes

target loop nest

ALPyNA
Namespace Run-time Analysis

Runtime
Type

Inspection

Runtime
Parallelisation

Dependence 
structure
available at 
compile time

Static Compilation Context Execution Context

Deferred
loop parallelisation

execute()

ALPyNA
execution

context

Return 
result to
caller 
contextRuntime

Dependence
Analysis

Compile time 
partial results
reused

ALPyNA
kernel
cache

Numba
Dispatch

CUDA
Driver Call

 
Accelerator

Device

Map : Loopnest to 
(driver + kernels)

Partial 
dependence

analysis
+ cost
Cache

 

hardware params

Statically determined 
cost model

Generate
CPU / GPU 

variant

Runtime
cost model

Generate
CPU / GPU

variant

JIT compile
@cuda.gpu

JIT compile 
@ numba.cpu

Figure 6.1: ALPyNA system architecture (introduced in Figure 4.4), generating kernels spe-
cialised to runtime dependences and domain sizes. Install time profiled constants and hard-
ware parameters inform the selection of the optimal device for compilation.

6.1 Motivation

The performance evaluation of ALPyNA (Chapter 5) demonstrated the potential for sig-
nificant reduction in runtimes of large and moderately complex loop nests (Section 5.4.3).
However, this is not the case for all loop nest instances. The GPU variants of loop nests with
light workloads never catch up and execute faster than the CPU counterpart across the entire
range of iteration domains. For such loop nests, it is always better to JIT compile for the CPU
rather than the GPU. With loop nests executing heavy computational parallel workloads, the
CPU variant executes faster than the GPU up to a threshold iteration domain size. Beyond
this threshold, a GPU is the faster device. The overall work performed is represented by
the overall iteration domain size. The iteration domain space at which this threshold occurs
varies between the 12 benchmarks (Figure 5.1).

Analytical performance predictors that rely on extensive profiling [63, 73] accurately gen-
erate optimised code for specific execution profiles of an application. Machine learning
techniques [9, 19] for performance prediction of sequential loop nests on parallel hardware
is dependent on the diversity of data used for training. Ideally, any cost prediction for a
particular execution instance would be generated directly from the source code.
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Listing 6.1: Example abstract loop nest structure for cost modelling.
F1:for itrF1 in range(L(F1)):

S1
F2: for itrF2

in range(L(F2)):
. . .

FN: for itrFN
in range(L(FN )):

Sj
SM

One of the primary goals of a cost model in a JIT compilation environment is to be light
weight, so as to reduce perceived execution latency. ALPyNA’s dynamic loop dependence
analysis optimises and generates code for target devices based on the loop dependence struc-
tures and iteration domains that emerge at runtime. Hence, any cost model must be staged
to combine static and dynamic information while also being lightweight. It must account for
the execution paradigm of a target device, the physical hardware specification, and execution
speed relative to the host device. It would also be advantageous for any cost model to be
easily retargetable to new hardware with a different parallel execution model. ALPyNA’s
cost model parameters inform the selection of target devices for JIT compilation (as shown
in Figure 6.1). This includes the generation of untyped skeletal kernels and drivers during
the static phase as well as during dynamic runtime kernel generation.

6.2 ALPyNA Cost Model

Parallelisation during static compilation usually makes conservative assumptions when a
dependence cannot be accurately resolved. Such limitations may be caused by unknown loop
limits and other variables within the loop nest (such as loop invariants). These assumptions
prevent opportunities to maximise parallel execution of a loop nest (Section 4.2).

Execution on a GPU is worthwhile if the interpreted execution time exceeds the time taken
to compile kernels, transfer kernels and data between the host and the accelerator, and ex-
ecuting the computation on the device. The current cost model accounts for transfer time
and execution time but omits compilation time as discussed in Section 7.3.2. The ACM de-
termines which device to execute a loop nest on, in a heterogeneous CPU–GPU compute
environment. It does so by using staging and a family of lightweight models to compare the
predicted relative runtimes of loop nest instances on each execution device.

Consider an imperfect loop nest as shown in Listing 6.1 comprising a set of N Python for
loop headers P = {F1,F2, . . . ,FN}. The execution domain (i.e. number of iterations) of
indexed for loop Fi is denoted as L(Fi). The loop nest contains M distinct Python state-
ments to be executed; each statement is represented as an indexed value Si, with 1 ≤ i ≤M .
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Statements are restricted to assignments to variables or arrays with non side-effecting func-
tions as this is a requirement for ALPyNA to perform dependence analysis (Section 7.3.1).
Note that there is no particular correspondence between the integer index of a for loop Fi

and that of a statement Si. Some loop bodies only contain nested loop bodies; others may
contain multiple statements.

We relate the control flow structure of for loops and statements in a loop nest, using the
graph theoretic notion of dominance [81]. We designate the set of loop headers enclosing an
arbitrary statement s as D(s). In other words, D(s) is the set of loop headers that dominate

s. We designate the set of statements enclosed within an loop header f as E(f). In other
words, E(f) is the set of statements dominated by f . D and E are duals in the dominance
relation, i.e.

f ∈ D(s)⇐⇒ s ∈ E(f) (6.1)

The ACM assumes that loops conform to this style, with N loop headers and M statements
inside a single loop nest. Thus the outermost loop header F1 in the original loop structure al-
ways dominates all other loop headers and statements. The form is not restrictive as multiple
top level loops can be modelled by introducing a top level loop to enclose them. ALPyNA
uses if-conversion (Section 4.3.1) to transform statements in loop bodies with control flow
divergence to predicated statements during AST parsing.

6.2.1 Modelling Interpreter Execution

Iint is a function that maps any individual loop nest statement Sj to an abstract cost, effec-
tively a predicted execution time in the CPython interpreter. Such values could be profiled
ahead-of-time. However, a novel feature of ACM is that all costs are expressed relative to

Iint, so profiling never actually takes place. Cint is a function that predicts the total cost of
interpreting all instances of statement Sj in the loop nest as the product of Iint(Sj) and all of
the iteration domain sizes, Equation 6.2. This requires loop limits to have been resolved to
numerical constants, which may require runtime introspection. Tint is a function that predicts
the total execution cost of the entire loop nest with top-level for loop header f as the sum
of the total execution costs of all statements in the loop nest, Equation 6.3.

Cint(s) = Iint(s)
∏

f∈D(s)

L(f) (6.2)

Tint(f) =
∑

s∈E(f)

Cint(s) (6.3)
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6.2.2 Modelling JIT Compiled CPU Execution

When ALPyNA JIT compiles a loop nest targeting the CPU, the cost model assumes an
execution cost very similar to that of the interpreter. Icpu maps a loop nest statement to an
abstract cost. One-time profiling at installation time is performed to express Icpu in terms of
Iint for each statement (Section 6.2.3 – Calibrating ACM). Ccpu is a function that predicts
the total cost of executing all instances of a statement in the loop nest as a product of the
individual statement cost and the loop domain limits, Equation 6.4. Tcpu is a function that
predicts the total execution cost of the entire loop nest, Equation 6.5.

Ccpu(s) = Icpu(s)
∏

f∈D(s)

L(f) (6.4)

Tcpu(f) =
∑

s∈E(f)

Ccpu(s) (6.5)

Relating Icpu and Iint assumes that the JIT compiler only compiles the loop into sequential
binary instructions, and does not vectorise the loop body for Single Instruction Multiple
Data (SIMD) execution units on the CPU. During the course of evaluation (Section 6.3),
compilation by Numba was verified to not automatically parallelise loop nest execution to
multiple cores on the CPU.

6.2.3 Modelling GPU Execution

Dependence theory states that if a dependence in a loop nest is carried by a loop and this
loop is executed sequentially, all other loops nested within this loop may be executed in par-
allel. ALPyNA uses dependence analysis to parallelise such inner loops. To accommodate
imperfect loop nests and the possibility that each statement in a loop nest may have different
loop carried dependences, a light-weight kernel is created for each statement in the body of
the loop nest (Section 4.4.1).

GPU Execution Cost Model Dependence analysis determines which loops to execute se-
quentially to maintain dependences between each statement. In theory, all other loops can
be executed in parallel. Loops that must be executed sequentially are transformed into a
GPU kernel call within the interpreter and called sequentially maintaining dependence re-
lationships. Every statement which can be executed in parallel is executed within a GPU
kernel. However, current GPGPU programming semantics restrict the number of dimen-
sions along which threads can be scheduled to three (Section 2.3.2). This means parallel
threads can be assigned for a triple nested for loop at best using CUDA thread semantics
alone. Nested loops with a greater depth are supported by sequentially executing such loops
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within a parallel GPU kernel. A block-cyclic scheduling approach (Bacon et al [17]) is used
for the decomposition of loop domains along axes and their structuring into a two-tier thread
hierarchy.

To model the cost of executing a loop nest that has been parallelised, the set of for loops
enclosing each statement s is split into distinct partitions:

1. Dseq(s) – the set of outer loop headers enclosing statement s which must be exe-
cuted sequentially, to satisfy the constraints imposed by a loop carried dependence.
ALPyNA executes sequential loops in the interpreter on the host and calls parallel
GPU kernels within the the scope of these sequential loops.

2. Dpar(s) – the set of all loop headers enclosing statement s that may be executed in
parallel. This may be either because there are no loop-carried dependences or all loops
carrying dependences are executed sequentially and accounted for in the set Dseq(s).
The GPU kernels are guaranteed to execute in the order of being invoked by the driver
code executing in the interpreter on the host. In general, the number of loops in Dpar(s)

may be greater than the number of parallel axes on the GPU (i.e. three). To model this
ALPyNA further partitions the set Dpar(s) into :

(a) Dgpu(s) – the set of loops that ALPyNA has mapped to hardware axes. ALPyNA
transforms each instance of execution along these iteration domains into a GPU
kernel execution instance. On an NVIDIA GP104 (Pascal microarchitecture)
GPU for example, each thread-block can only be allocated a maximum of 1024
threads. ALPyNA calculates a thread hierarchy from the loop domain sizes at
run time and splits it into a tuple of grid sizes and block sizes. The loop domains
scheduled along the logical x,y,z hardware axes are intended to maximise parallel
work while meeting the threads per block constraint imposed by the GPU.

(b) Dgpu(s) – the set of all remaining loops that cannot be mapped onto a GPU paral-
lel axis, these are executed sequentially within each GPU kernel. Although these
loops are executed sequentially within a parallel kernel, the order of statement
execution does not matter as loop carried dependences have been maintained by
the sequentially executed outer loops in Dseq(s) Therefore these loops can be ex-
ecuted safely without synchronisation barriers inserted into the loop body within
these loops.

To model the parallel execution cost of a statement s on a GPU, the number of executions are
measured as the product of the loop limits of the enclosing for loops, as for the interpreter
and the CPU. However unlike the interpreter and CPU, which are modelled as executing each
statement instance sequentially, the cost model uses a time-step factor to represent any speed



6.2. ALPyNA Cost Model 101

L2 Cache

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-4

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-3

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-2

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-1

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-0

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-5

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-6

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-7

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

L1 Cache

\label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler \label{sec:05 perf comparison}

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

Warp Scheduler

SM-8

Figure 6.2: Simplified block diagram of a GTX-1060, (platform T2) that uses the GP104
microarchitecture.

up from parallel execution. The net effect of this factor is to divide sequential execution time
by the parallel speedup of the computation being executed. At runtime, ALPyNA introspects
and resolves loop domain limits as part of its dependence analysis. During code generation,
total domain size is padded and split into a thread hierarchy of grids and thread-blocks.
These threads are split along a 3-D plane (at-most) of thread axes. To estimate the parallel
execution cost, a function {G(L(f)), f ∈ Dgpu(s)} is defined to be the number of grids
along a particular dimension in the 3-D thread plane. G maximises the threads-per-block
to calculate the number of grids within a thread hierarchy while maintaining the maximum
threads-per-block constraint of each device by loop-interchange and sorting for the largest
loops within the set Dpar(s) (Section 4.4.1).

While the number of threads allocated to execute on an Streaming Multiprocessor (SM)
can be greater than the number of CUDA cores in the SM, the maximum number of threads
executing in parallel at any one time in an SM is the product of the number of warp schedulers
per SM (denoted v) and the warp size (denoted w). The block-cyclic distribution of threads
in parallelised GPU code means that any parallelisation speed-up factor should take into
account precisely how the execution is mapped onto SMs in a GPU. Figure 6.2 shows a
simplified diagram of an NVIDIA GTX-1060 GPU. This device has 9 SMs (denoted u);
each SM uses the GP104 NVIDIA Pascal microarchitecture. Each SM has 128 CUDA cores
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on them and 4 warp schedulers. For any statement s that is executed in parallel, the amount
of work done by each GPU kernel invocation is denoted as λexec(s) (Equation 6.6).

λexec(s) =
⌈g
u

⌉
× 1

g.v.w
×

∏
f∈Dgpu (s)

L(f)×
∏

f∈Dgpu (s)

L(f)

g =
∏

f∈Dgpu (s)

G(L(f))

(6.6)

All the threads in a thread-block are allocated to a single SM. Intuitively, the term g.v.w

provides overall parallel speed-up if a theoretical GPU built from the same microarchitecture
had an infinite number of SMs and each thread-block can be allocated to simultaneously
execute on all SMs. If the number of thread-blocks exceeds the available SMs, these thread-
blocks are allocated in batches to an SM and sequentially executed. The slowdown relative
to the theoretical maximum is captured by the slowdown factor

⌈
g
u

⌉
.

Modelling GPU Starvation

ALPyNA maintains loop-carried dependences on code transformed for the GPU by schedul-
ing outer loops that carry dependences to execute in the CPython interpreter. The GPU ex-
ecutes JIT compiled binary code much faster than the interpreter. If the interpreter executes
each kernel invocation faster than the GPU can execute the kernel, each kernel is queued for
execution on the GPU and overall execution time is bound by kernel execution. Otherwise,
the GPU will finish each kernel before the interpreter can schedule the next one, and the
GPU is starved of work.

There are two cases to consider. If all the loops that dominate a statement s are parallelisable,
i.e. Dseq(s) = ∅, the code is transformed into a single invocation of a kernel that executes
all loop iterations of D(s) on the GPU. Hence there is a single kernel invocation latency cost
Ckivm. Otherwise Dseq(s) 6= ∅ and the execution cost is the greater of the kernel invocation
or the GPU execution cost. Here Igpu(s) is the cost of executing a single instance of the
compiled kernel that represents statement s. Equation 6.7 models the cost of executing a
loop nest statement while taking into consideration whether the relatively slow execution of
the interpreter is acting as a bottleneck while scheduling kernels.

Cgpu(s) =


max (Ckivm, λexec(s).Igpu(s))

∏
f∈Dseq (s)

L(f) if Dseq(s) 6= ∅

Ckivm + λexec(s).Igpu(s) if Dseq(s) = ∅

(6.7)
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Figure 6.3: ALPyNA profiles a very simple kernel to discover the minimum work rate re-
quired to keep the GPU busy

Figure 6.3 depicts how for smaller amounts of parallel work, the GPU kernel completes early
and the interpreter loop execution time dominates. However, once there is enough work in
each kernel invocation to keep the GPU busy, GPU execution time dominates. This threshold
varies depending on the relative performance of the GPU and the interpreter and is specific
to each CPU–GPU combination.

To ascertain the GPU invocation cost threshold for each hardware setup, a very simple loop
statement (as shown in Listing 6.2) is profiled once at installation time. We use a two di-
mensional loop where only the inner loop can be parallelised. We profile this loop nest in
ALPyNA using varying domain sizes to arrive at the GPU throttling threshold. The profiling
starts at a parallel domain size {L(f) = w|f ∈ Dpar(s), w ← warpsize} and the domain
size is increased exponentially until the profiler detects execution time has gone beyond its
inflexion point. The profiler then interpolates the number of threads at the inflection point
and calculates λexec (Equation 6.7) for the domain size at the inflection point.

Listing 6.2: Simple kernel used to profile value of Ckivm
def _static_profile_kernel(arg_a, i_dom):

for i in range(i_dom):

for j in range(arg_a.shape[0]):

arg_a[j] = arg_a[j] + 1

return arg_a
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This profiling and calculation is done to estimate the amount of GPU parallel work (in terms
of domain sizes) required to overcome the kernel invocation cost Ckivm, and is designated
λX . At the kernel invocation cost threshold, the following relationship is assumed :

Ckivm ≡ (λX × Igpu(s)) (6.8)

Profiling a simple statement s to determine the cross-over point λX , provides a maximal num-
ber of threads beyond which GPU execution time will dominate the loop iterations executing
in the interpreter to schedule kernels representing statement s. For a kernel representing
more complex statements, this assumption leads to the ACM selecting a higher, (conserva-
tive), threshold of parallel work to offload to the GPU. Substituting Ckivm into Equation 6.7
the estimated cost of executing each kernel is shown in Equation 6.9.

Cgpu(s) =


max (λx, λexec(s)) .Igpu(s)×

∏
f∈Dseq (s)

L(f) if Dseq(s) 6= ∅

(λx + λexec(s)).Igpu(s) if Dseq(s) = ∅

(6.9)

The full cost of executing the loop nest with outermost for loop f on the GPU is the sum-
mation in Equation 6.10 where Cxfer(GPU) is the data transfer cost outlined next.

Tgpu(f) = Cxfer(f) +
∑

s∈D(f)

Cgpu(s) (6.10)

Modelling GPU Transfer Time

Executing on accelerators like GPUs incurs overhead for transferring data between the host
CPU and the accelerator. Loop nests with light parallel work are sensitive to the overheads
of data transfer.

Following common practice ALPyNA normalises data transfer time against the estimated
cost of executing a very simple statement in the CPython interpreter, Iint(s). Bandwidth
profiling of the PCIe bus on which the GPU resides is performed once at install time, along
with the measurements of GPU starvation factor λX (Equation 6.8), and the JIT speed-up
factor µ (Section 6.2.3, Equation 6.12).

Assuming that the set Pd is the set of all vectors that are transferred from the host to the GPU
and Ph is the set of all vectors transferred back to the host after execution, Equation 6.11
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shows the normalised cost of data transfer.

Cxfer(GPU) =
∑
m∈Pd

| < m > | × size(T (< m >))

BW/Iint(s)
+
∑
n∈Ph

| < n > | × size(T (< n >))

BW/Iint(s)

where < m >∈ Pd, < n >∈ Ph

| < m > | 7→ number of elements in vector < m >

T (< m >) 7→ data type of each element of vector < m >

size(type) 7→ number of bytes in memory representation of type
(6.11)

While the transfer model is fairly standard, a novel feature is that it is staged. That is
ALPyNA identifies the set of vectors to be transferred to/from the GPU, and resolves their
types and sizes at runtime. These vectors may include dynamically generated vectors of type
- marshalled vectors (Section 4.4.2 – GPU Scalar Marshalling). These are combined with
the ahead-of-time bandwidth measurements to estimate the transfer overhead, Cxfer(GPU).

Calibrating ACM

ACM normalises the cost of executing a statement on the CPU or GPU relative to the inter-
preter. Previous GPU cost models such as Leung et al [82] approximate the relative speed up
by profiling the execution of a single instruction in the interpreter to the speed up achieved
executing the same instruction on the GPU. Such cost estimations do not take into consider-
ation differing speedups of the same instruction on the GPU due to scheduling constraints of
different (grid, thread-block) thread hierarchies. ACM is more sophisticated in this respect.

Like many cost models ACM takes parameters that characterise the specific execution plat-
form, e.g. CPython and the Numba JIT compiler on a specific CPU, and CUDA on a specific
GPU. Specifically the key cost equations, 6.2, 6.4 and 6.7 take parameters representing the
predicted runtime Iplatform(s) of executing a statement s on a given platform, e.g. Icpu(s) in
Equation 6.4. The platform costs for a statement s are computed relative to the predicted
interpreter cost Iint(s).

Calibration is required to determine the value of the model parameters for each execution
platform, and this is achieved as follows. The cost of executing a JIT compiled statement
relative to the interpretation cost is profiled once at install time. A very simple kernel similar
to the one used to profile Ckivm (Section 6.2.3 – Modelling GPU Starvation) is used to relate
the runtimes of JIT compiled, and CPython interpreted code. The array size in the loop nest
is chosen to ensure that there is only one cache miss (on the first iteration). The relative
performance factor obtained is designated as µ in Equation 6.12. This provides a close
approximation of the relative runtimes of compiled and interpreted code without caching,
and allows us to separately account for caches when comparing CPU and GPU runtimes.
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µ =
Iint(s)

Icpu(s)
(6.12)

The cost of GPU execution clearly depends on the relative clock frequencies of the CPU and
GPU, fcpu and fgpu. Moreover, Armih et al [12] and Belikov et al [24] both report the size
of the last level cache as a significant factor while comparing relative performance of data
intensive programs on heterogeneous platforms. The last level cache (L2) on the GPU LCgpu

is shared by all SMs. Each SM has its own set of L1 caches. For example, in the NVIDIA
Pascal (GP104) microarchitecture, each SM has two L1 caches [133] as shown in figure 6.2.
This cache sharing is represented by the factor σ = num SM × L1 caches per SM in
Equation 6.13 that computes relative CPU/GPU performance. A cache sharing factor is not
introduced for the CPU core because Numba JIT compiles a loop nest for a single core. The
ACM assumes that the CPU core that executes the code has exclusive use of the L3 cache
(LCcpu).

Icpu(s)

Igpu (s)
= ψ ≈ fgpu × (LCgpu/σ)

fcpu × LCcpu
(6.13)

Equation 6.14 shows how the cost of GPU execution relative to the interpreter is directly
computed as the product of CPU/GPU costψ and the interpreter/CPU ratio µ (Equation 6.12).

Iint(s)

Igpu (s)
≈ µ× ψ (6.14)

Substituting Equations 6.12, 6.13 and 6.14 into Equations 6.2, 6.4 and 6.7 provides ALPyNA
with an overall cost for each execution device that is normalised with respect to the cost of
executing the loop nest on the interpreter. The platform with the minimal execution cost
is selected i.e. min(Tint, Tcpu, Tgpu). These relationships provide an analytical cost model
parameterised on :

1. dynamically determined dependence relationships in a loop nest

2. the thread hierarchy calculated from this dependence structure and the domains of all
parallelisable loops dominating a statement

3. hardware characteristics of the CPU and GPU

4. whether the relative speed of the interpreter causes starvation effects on the GPU.
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6.3 Evaluation

The evaluation in Section 5.4.3 shows that for light parallel workloads, the CPU is the opti-
mal target device for JIT compilation. For heavy parallel workloads the CPU variant is the
optimal choice up to an iteration domain threshold, and beyond this the GPU is the optimal
target device. This section is an evaluation of the effectiveness of ACM to guide selection of
a target device for JIT compilation of loop nests.

6.3.1 Experimental Setup

Benchmarks ACM is evaluated using twelve loop-intensive benchmarks of varying com-
plexities and features. Section 5.1 describes the loop level characteristics of these bench-
marks that affect the performance of JIT compiled code. The benchmarks (summarised in
Table 5.1) represent a variety of characteristics that test ACM’s capability to predict the op-
timal target device for compilation.

Hardware Platforms ACM is evaluated on two machines M1 and M2. While M1 is a
server grade machine, M2 is a typical desktop machine. The hardware specifications and the
software stack used by ALPyNA for this evaluation has been previously specified in Section
5.2. A third machine configuration (M3) is created by limiting the frequency of machine M2

to 800 MHz, while maintaining all other parameters the same. This evaluation follows the
same convention in Chapter 5 and refers to the combination of hardware specifications and
software stacks on machines M1, M2 and M3 as platforms T1, T2 and T3 respectively.

6.3.2 Methodology

ALPyNA has been developed with a profiling mode that disables the cost model guided
JIT compilation. Instead it allows a developer to override the cost model’s choice of target
device with a specific device (one of interpreter, CPU or GPU). This mode is used to disable
the cost-model guided selection and compilation for a target device. However, the profiling
mode will still evaluate a relative cost and predict the performant device to execute a given
loop nest instance.

Before using ACM on a target CPU–GPU platform the values of λX , µ (Eqs. 6.12 and 6.8)
and relative GPU bandwidth for data transfer (Section 6.2.3) must be profiled. A 10% safety
margin is used over the predicted inflection point (λX) at which the interpreter is able to keep
the GPU busy. The calculation of BW

Igpu
, i.e. data transfer speeds in execution time units (Iint),

is done while profiling for the value µ to ensure consistency.
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The Numba compiler compiles and executes single threaded code on the CPU. During ex-
perimentation no other cores execute computationally intensive code and hence the core can
reach maximum frequencies without being throttled.

To profile a wide range of domain sizes for each benchmark the iteration domain sizes in
each loop are increased exponentially. Runtime on the ACM predicted device is compared
with runtime on the optimal device (that would be identified by an oracle predictor) at each
domain size. Reported runtimes are the arithmetic mean of 5 executions. We interpolate the
iteration domain size at which ACM predicts GPU execution becomes profitable, to calculate
the intervals of mispredicted domain sizes.

6.3.3 Comparative Baselines

For each domain size, execution time on the optimal device predicted by ACM device is com-
pared with two baselines: (i) execution time on the optimal device identified by an ‘oracle’
predictor and (ii) execution time on the device selected by a two-class Support Vector Ma-
chine (SVM). An SVM [150] is a supervised machine learning model used for classification
and regression analysis. The classification algorithm generally works for linearly separable
data. The ‘oracle’ training data shows that the predictions are linearly separable based on in-
put sizes for each individual benchmark. Because of its intuitive simplicity and the availabil-
ity of high-performance SVM library implementations [33], it is a popular machine learning
(ML) algorithm in program optimisation contexts. For instance, Table 1 in [15] shows that
SVM is the second most deployed machine learning approach after decision trees, for au-
tomated ML-based compiler optimisations. SVMs are found to be particularly effective for
identifying hot code regions for selective optimisation [90].

The SVM is trained for each benchmark using the labelled experimental data of all other
benchmarks – i.e. Leave-One-Out Cross Validation (LOOCV). Training is performed sep-
arately for each of the three evaluation platforms. The optimal performant device at each
iteration domain size is identified for each benchmark using the oracle predictor. The SVM’s
feature vector comprises structural components of each loop nest (cf. Table 5.1), iteration do-
main size, raw execution times on target devices and the optimal device chosen by the oracle
predictor. All feature values are scaled with min-max normalization to the range [0, 1].

6.3.4 Cost Model Performance

GPU Speedups. Table 6.1 shows the range of speedups obtained for each benchmark being
executed on the GPU. The measured computation time on the GPU includes data transfer
time and the time for execution. It shows that most benchmarks benefit from exploiting the
GPU beyond iteration domain sizes that provide enough parallel computation to amortise the
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Figure 6.4: ALPyNA Cost Model misprediction penalties for 12 loop-intensive benchmarks
with varying domain sizes on platform T1. Misprediction slowdown is the ratio of predicted
device runtime and faster device runtime, so optimal is always 1.0. Each experiment is
annotated with the predicted optimal target device.
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Benchmark
GPU speedup

T1: CPU/GPU
2960/1405MHz

T2: CPU/GPU
3900/1500MHz

T3: CPU/GPU
800/1500 MHz

black-scholes 1.17 – 3.83 1.13 – 2.61 1.60 – 8.21
conv-2d 1.31 – 4.61 1.06 – 2.05 1.45 – 6.92
conway na na 1.36
fbcorr 8.16 – 17.55 3.07 – 8.06 9.87 – 51.38
gemm 2.46 – 8.68 2.19 – 2.71 2.23 – 11.69
gemver 1.23 1.12 na
hilbert 1.55 na 1.25 – 2.51
jacobi na na 1.15
mandelbrot 1.80 – 9.52 1.59 – 4.48 1.95 – 12.39
saxpy na na na
syr2k 2.87 – 192.45 2.65 – 53.03 2.59 – 134.69
vadd na na na

Table 6.1: ALPyNA GPU speedups. Some benchmarks are always faster on the CPU.

data transfer and overcome the slower per-core execution speed of the GPU. As discussed in
Section 5.4.3, GPU execution of some benchmarks is not faster than the CPU at any domain
sizes.

Misprediction Penalty is reported in Figure 6.4 for each of the 12 benchmarks on target plat-
form T1. Figures B.1 and B.3 in Appendix B show the misprediction penalties for platforms
T2 and T3 respectively. At each domain size these figures show the platform device (CPU or
GPU) selected and a misprediction penalty. The misprediction penalty is the slowdown in-
curred when the ACM predicts differently compared to the oracular predictor. In Figure 6.4,
these are shown as peaks in the graph at each benchmark size that is mispredicted compared
to the optimal value of 1.0. The relevant domain sizes are plotted on a logarithmic x-axis.

For all benchmarks and platforms Table 6.2 shows the geometric mean penalties over all do-
main sizes and the maximum penalties. ACM provides entirely accurate predictions for four
benchmarks on T2 and for three on T1 and T3. The mean penalties for different benchmarks
vary from 1.0 (optimal) to 1.68, 1.50, and 2.70 for T1, T2, and T3 respectively. ACM has
the same or lower misprediction penalty than the SVM predictor in 6 benchmarks on T1 and
T2, and 10 benchmarks on T3. Table 6.2 also shows the mean penalty and mean maximum
penalty on each platform. The geometric mean penalty across all experiments is 1.14 for
ACM and 1.46 for SVM predictor.

ACM delivers similar mean misprediction penalties for eight benchmarks on all three plat-
forms (T1, T2 and T3). Between T1 and T2 similar misprediction penalties are observed
for nine benchmarks. The mean misprediction penalty for black-scholes is lower for plat-
form T1 (1.16) than for platforms T2 (1.5) and T3 (2.7). Benchmarks saxpy and vadd have
lower mean misprediction penalties on T3 (saxpy:1.07, vadd:1.10) than on T1 (saxpy:1.57,
vadd:1.68) or T2 (saxpy:1.35, vadd:1.30).
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Figure 6.5: ALPyNA Cost Model misprediction ranges (shaded blue) for 12 loop-intensive
benchmarks with varying domain sizes on platform T1. ACM’s domain crossover point is
interpolated from the measured values. The misprediction range of the SVM predictor is
shaded red. The intersection of mispredicted domain ranges is shaded purple.
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Benchmark

T1: CPU/GPU
2960/1405MHz

T2: CPU/GPU
3900/1500MH

T3: CPU/GPU
800/1500 MHz

ACM SVM ACM SVM ACM SVM
mean max mean max mean max mean max mean max mean max

black-scholes 1.16 2.29 1.04 1.45 1.50 2.60 1.03 1.34 2.70 8.21 3.61 8.21
conv-2d 1.07 2.30 1.69 4.56 1.00 1.00 1.27 2.05 1.07 2.12 2.33 6.91
conway 1.01 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.36 1.04 1.36
fbcorr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 20.44 51.38
gemm 1.05 1.54 1.90 8.68 1.00 1.00 1.40 2.70 1.07 1.82 1.96 11.69
gemver 1.01 1.23 1.00 1.00 1.01 1.12 1.00 1.00 1.00 1.00 1.01 1.16
hilbert 1.02 1.16 1.05 1.54 1.02 1.27 1.00 1.03 1.11 2.08 1.23 2.50
jacobi 1.15 2.05 1.00 1.00 1.09 2.53 1.00 1.00 1.01 1.14 1.01 1.15
mandelbrot 1.00 1.00 7.12 237.12 1.05 1.58 7.80 296.69 1.00 1.00 7.53 260.25
saxpy 1.57 5.23 1.00 1.00 1.35 3.64 1.00 1.00 1.07 1.57 1.00 1.00
syr2k 1.00 1.00 2.27 90.33 1.10 2.64 1.95 26.38 1.10 2.59 2.21 87.83
vadd 1.68 6.33 1.00 1.00 1.30 5.07 1.00 1.00 1.10 2.24 1.00 1.00
Geo.Mean 1.17 1.75 1.34 3.34 1.13 1.73 1.27 2.50 1.14 2.16 1.81 6.25

Table 6.2: Misprediction penalties for all benchmarks on all platforms: showing Geometric
Mean Penalty across all input sizes, and Maximum Penalty.

Misprediction Ranges. Another metric to investigate the prediction performance of ACM
is the range of domain sizes over which ACM correctly predicts the performant device in a
platform. Figure 6.5 shows CPU and GPU benchmark runtimes of the 12 benchmarks on T1

with ACM’s misprediction intervals shaded in blue. The corresponding range mispredicted
by the SVM is shown in Figure 6.5 by misprediction intervals shaded red. Where both
ACM and the SVM model mispredict, the overlap between both ranges are shaded purple.
For benchmarks which ACM correctly predicts across all domain sizes, there are no regions
shaded blue. Likewise, benchmarks for which the SVM predicts correctly across all domain
sizes do not have any region shaded red. Figures B.2 and B.4 in Appendix B show the
misprediction ranges for platforms T2 and T3.

Benchmarks
ACM Misprediction Range SVM Misprediction Range
T1 T2 T3 T1 T2 T3

black-scholes 0.30 0.60 0.70 0.10 0.10 0.90
conv-2d 0.09 0.00 0.09 0.45 0.45 0.54
conway 0.14 0.00 0.14 0.00 0.00 0.14
fbcorr 0.00 0.00 0.00 0.00 0.00 1.0
gemm 0.13 0.00 0.13 0.38 0.38 0.38
gemver 0.08 0.08 0.00 0.00 0.00 0.08
hilbert 0.22 0.11 0.22 0.11 0.11 0.33
jacobi 0.20 0.10 0.10 0.00 0.00 0.10
mandelbrot 0.00 0.13 0.00 0.63 0.63 0.63
saxpy 0.43 0.25 0.18 0.00 0.00 0.00
syr2k 0.00 0.10 0.10 0.30 0.30 0.30
vadd 0.40 0.20 0.13 0.00 0.00 0.00
mean 0.16 0.13 0.15 0.16 0.16 0.37

Table 6.3: Ratio of mispredicted/correct ranges for all benchmarks on platforms T1, T2 and
T3 using ACM and an SVM predictor
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If ACM selects GPU execution over the CPU, the threshold domain size predicted by ACM
is interpolated from the results of the cost model predictions. The oracular threshold domain
size (if it exists) is interpolated from the actual execution results. The misprediction range is
calculated as the domain sizes between these two points. ACM delivers similar misprediction
ranges for eight benchmarks on platforms T1, T2 and T3. Table 6.3 shows the ratio of
mispredicted domain ranges over which the benchmarks are executed. ACM has the same or
smaller misprediction intervals than the SVM predictor for 5,7 and 10 of the benchmarks on
T1,T2 and T3 respectively. The overall mean mispredicted domain range ratio is 0.146 for
ACM and 0.23 for the SVM predictor.

The misprediction ranges are generally small for benchmarks with sharply diverging CPU
and GPU runtime curves such as conv-2d, gemm, mandelbrot and syr2k. The exceptions are
black-scholes on T2 (0.6) and T3 (0.7), where ACM mispredicts that CPU execution will be
faster over the initial range before correctly selecting the GPU at medium to large domain
sizes. For benchmarks where the CPU always executes faster than the GPU, gemver and
conway have a small range of mispredicted domains but mispredicts at large domain sizes
for saxpy and vadd.

6.4 Summary

This chapter has presented the ALPyNA Cost Model, a lightweight cost model to select the
most performant target device in a CPU – GPU heterogeneous environment. ACM is staged,
combining compile-time analysis with runtime introspection in the CPython interpreter to
parameterise the static model. The model is designed to be lightweight as it is evaluated at
runtime. The ACM models for interpreted and JIT-compiled CPU execution are simple and
relatively standard. In contrast the GPU model is both elaborate and novel as it accounts for
key device costs, including the time to transfer data to and from the device, block structured
execution and starvation effects arising due to the relatively slower execution speed of the
interpreter. All of the platform models are parametric in key characteristics of the devices
in a heterogeneous platform, like warp size, number of SMs, operating frequency and cache
size.

An important scientific contribution of ACM is to show that a comparatively simple staged
analytical model can effectively determine at runtime whether to offload a loop nest in a
dynamic language. ACM is evaluated on three heterogeneous platforms T1, T2 and T3 across
360 experiments with 12 loop-intensive Python benchmark programs (Section 6.3). The
results show small misprediction intervals and a mean slowdown of just 14.6%, relative to
the optimal (oracular) offload strategy. This is a lower overall mean misprediction penalty
compared to the predictions of a trained SVM model (45.0%). The overall domain range
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misprediction across all experiments is 14.6% which is lower than the overall mispredicted
range of the SVM (23.0%).

Comparatively simple cost models for the parallel platforms suffice because the system does
not attempt to accurately predict absolute loop runtimes, rather it compares the relative run-
times on the GPU and CPU with interpretation or JIT compilation.
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Chapter 7

Conclusion

Parallel programming of accelerator devices such as GPUs enable programmers to signifi-
cantly reduce execution time. However, directly programming such devices e.g. in CUDA or
OpenCL requires low-level expertise. The research in this thesis aims to aid non-expert de-
velopers programming in an interpreted dynamic language (Python) to automatically exploit
accelerator parallelism.

This thesis presents the development of ALPyNA, a staged loop dependence analysis frame-
work and code generator for Python. An extensive evaluation of the execution profile and
performance gains from ALPyNA led to the identification of the requirement for a lightweight
cost model to be used in a JIT environment. The developed cost model is integrated into
ALPyNA to direct the automatic runtime exploitation of the most performant target device
in a heterogeneous execution environment.

This chapter reviews the challenges and opportunities identified by this thesis. Section 7.1
reviews the problem addressed by this thesis. Section 7.2 summarises the main contributions
of this thesis. Section 7.3 presents a critical analysis of these contributions and presents so-
lutions that could potentially overcome or resolve some of these constraints. Finally, Section
7.4 shows future directions that this work could potentially take.

7.1 The Problem

Accelerators such as GPUs provide large computational speedups of data parallel programs.
Modern GPUs speed up data parallel computation by executing a large number of threads in
parallel. Threads are scheduled on a large number of simple CUDA cores arranged in blocks
called SMs. These threads are scheduled for execution in block-cyclic manner. To exploit the
performance potential, GPUs have to be programmed using low-level programming C-like
languages such as CUDA and OpenCL. These programming languages require developers
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to have a deep understanding of the hardware characteristics of each GPU and the GPGPU
parallel programming model.

Dynamic languages such as Python are increasingly being used in industry and academia for
numerical computation. Language bindings to CUDA and OpenCL interfaces enable pro-
grammers to write GPU kernels using the semantics of the host language. However, such
methods still expose programmers to the hardware complexity of a GPU. Parallel program-
ming interfaces to reduce programming complexity of GPUs include providing APIs and
libraries with specific operations.

Loop parallelisation has been researched and incorporated into parallelising compilers for
static languages such as FORTRAN and C/C++. In dynamic languages, loop parallelisation
has mainly focussed on runtime JIT compilation for CPUs. Trace based JIT compilation
for dynamic languages target the CPU because it relies on optimising and executing binary
instructions of the CPU that have already been executed. Many efforts to automatically ex-
ploit parallelisation on GPUs have concentrated on algorithmic skeletons as discussed in
Chapter 3. However, little work has been done to automatically parallelise loops in dynamic
languages such as Python and to exploit the performance benefits of accelerators in a hetero-
geneous environment.

7.2 Contributions

This thesis addresses the hypotheses outlined in Section 1.1 as follows :

7.2.1 Staged Automatic Loop Parallelisation

Hypothesis H1. Staged static and dynamic dependence analysis on array-centric loop nests,

in a general purpose dynamic scripting language, will yield higher performance parallel

code than static dependence analysis alone.

Chapter 4 presented ALPyNA, a novel loop parallelisation framework to parallelise linear
loop nests written in plain Python. ALPyNA stages dependence analysis to maximise the
opportunity to parallelise loop nests. The static phase parses the AST of loop nests and con-
verts them into closures. Each closure is associated with in-memory data structures holding
dependence relationships between various load–store memory accesses. If these relation-
ships cannot be resolved statically, resolution of these dependence relationships is deferred
to runtime and the whole loop nest is marked for runtime analysis. If all dependence re-
lationships can be statically inferred, then ALPyNA generates and caches untyped skeletal
kernels.
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At runtime, loop nests marked for runtime analysis are analysed after augmenting depen-
dence relationships that were not resolved during static compilation. ALPyNA introspects
the CPython runtime environment to resolve dependence relationships and maximise the po-
tential for parallelisation. Once the dependence relationships are determined, CPU or GPU
kernels are generated.

Chapter 4 also presented the techniques used for generation of GPU kernel and driver code.
GPU kernel and driver generation is customised at runtime to maximise the parallelism ob-
tained from all parallel loops. Loops carrying dependences are executed sequentially in the
appropriate order to preserve dependence constraints.

Runtime introspection is used to determine types for the data structures referenced within
kernels. The runtime discovered types are patched into the kernels at runtime to enable JIT
compilation. ALPyNA utilises the Numba compiler for JIT compilation of CPU code and
GPU kernels.

7.2.2 Systematic Analysis of ALPyNA

Hypothesis H2. Code can be automatically synthesised to target heterogeneous architec-

tures, with minimal user intervention. When such code is executed on a resource-aware

adaptive Virtual Machine (VM), it will

• almost never degrade performance despite the overheads of dynamically re-targeting

code

• in many instances significantly reduce execution time.

A systematic analysis of the performance of ALPyNA is presented in Chapter 5. ALPyNA’s
capabilities are exercised using 12 benchmarks of varying complexities. These vary from
easily parallelisable singly nested loops to nested loops with loop carried dependences and
control flow divergence within the body of the loop. Over 240 experiments were performed
across two heterogeneous platforms T1 and T2. The execution times were measured on a
range of iteration domain sizes to compare the relative performance between the interpreter,
CPU and GPU.

Interpreter vs CPU: For each benchmark, performance of the JIT compiled CPU variant
was faster except at lower iteration domain sizes. At lower domain sizes ALPyNA’s analysis
time and code generation, and Numba’s compilation time dominated overall execution time.
Measured execution speed-ups ranged from 0.001x – 1199.9x (T1) and 0.002x – 1290.19x
(T2). CPU speedups continued to increase across all domain ranges once the overhead of
analysis and compilation were overcome.
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Interpreter vs GPU: The performance of GPU code generated by ALPyNA showed large
speedups for larger iteration domain sizes when the interpreter execution time was greater
than dependence analysis and compilation time. GPU speedups were between 0.0001x (T1)
and 0.001x (T2) at the lower end to a maximum of 16435x (T1) and 13895x (T2).

GPU vs CPU A comparison between the GPU and CPU variant showed that the CPU is the
performant device for smaller iteration domain sizes for all benchmarks. The GPU executes
heavy parallel loop nests faster than the CPU at larger iteration domain sizes. Execution is
found to always be faster on the CPU for light parallel workloads. The relative execution
speed of the GPU variant was between 0.22x – 179.55x (T1) and 0.33x – 50.68x (T2).

7.2.3 Lightweight analytical cost model for ALPyNA

Hypothesis H3. A staged static and dynamic analytical cost-model can accurately determine

the quicker device that will execute a given instance of an array-centric loop nest written in a

dynamic scripting language in a heterogeneous CPU–GPU environment. Such a cost model

need only be parameterised on the hardware characteristics of the CPU and the GPU, and

requires only installation time profiling of the relevant compute devices using a simple pre-

determined kernel.

Chapter 6 presented the design, implementation and evaluation of ACM, the first analytical
cost model for loop nest parallelisation supporting automatic runtime exploitation of GPUs in
a dynamic language. ACM is staged and lightweight, and is used to select between compute
devices to effectively parallelise moderately complex loop nests using ALPyNA.

For each instance of a loop nest, ACM dynamically predicts the relative runtimes on alterna-
tive devices so that ALPyNA can select the fastest. The models for the CPython interpreter,
and for JIT compiled CPU execution are relatively standard, but the GPU model is both novel
and elaborate. It accounts for key costs like data transfer time and starvation effects. All of
the platform models are parametric in key characteristics of the platforms, like cache size
and sharing, and warp size on the GPU.

A systematic evaluation of ACM on three heterogeneous platforms is also performed us-
ing 12 standard loop-intensive Python benchmarks. Each benchmark covers a wide range
of domain sizes. The cost model proves to be effective, with a mean misprediction range
of 14.66% and a mean misprediction penalty of just 14.6% slowdown, relative to optimal,
across all benchmarks. The ACM is better on all three platforms compared to a trained SVM
predictor model when considering overall misprediction penalty. ACM’s overall mispredic-
tion range is also better than or equal to the predictions of a trained SVM machine learning
model on all three platforms.

Machine Learning models require the upfront effort of training using representative data sets.
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This would require extensive profiling of each benchmark on a wide range of domain sizes
to accurately predict the most performant device at runtime. Accurate predictions are also
dependent on a similar loop dependence structure being identified by the model. ALPyNA
uses a one time simple profiling phase to determine cost factors for each accelerator, to use in
ACM. ALPyNA’s runtime dependence analysis and cost model customised to the hardware
characteristics of the CPU – GPU system provides better performant device prediction while
being sufficiently lightweight.

7.3 Limitations

While ALPyNA can parallelise moderately complex loop nests written in plain Python code,
there are some restrictions that limit the scope of analysis. These limitations are engineering
design decisions carefully made to minimise implementation effort. These constraints do not
detract from the overall findings of this thesis.

7.3.1 ALPyNA

Subscript indexing: As ALPyNA uses Numba for GPU compilation and data transfer be-
tween host and GPU memory, currently only Numpy arrays and basic scalar types are al-
lowed. Each variable subscript must be a linear function of loop iterator values. ALPyNA
only supports basic indexing; array slices are not allowed. All dereferencing of a Numpy
vector read should evaluate to a value which has that vector’s ‘dtype’ and every write should
access the location of a scalar within a Numpy vector. This precludes Numpy array broad-
casting semantics.

Side effects: ALPyNA requires that any loop nest analysed is side-effect free. Function
calls within a loop nest body are checked against a known list of side-effect free, read-only
functions. JIT compilation is performed on loop nests with homogeneous vectors of types
that can be JIT compiled for both CPU and GPU. These are obtained at runtime through
introspection. Within the body of the loop nest, operators on these vectors should not be
overridden. This can be checked by checking whether the status of the method mapped
to the operator is read-only. Restricting developers to these operations enables ALPyNA to
ensure that parallel execution instances of GPU kernels do not break dependence constraints.
ALPyNA does not currently support runtime detection of side-effecting functions through
the use of Python packages such as purefunc [2].

Deoptimisation and exceptions: For GPU JIT compilation with Numba, all vectors within
a loop nest are required to be homogeneous Numpy vectors. Enabling standard Python lists
for JIT compilation would require transforming data to Numpy arrays. A vector detected
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as non-homogeneous during this transformation would require deoptimisation i.e. execution
would have to be continued in the interpreter. However this is currently not implemented.
ALPyNA does not speculatively JIT compile code for partial paths within the loop nest.
Analysis and compilation is instead performed on each loop nest in its entirety after runtime
dependence analysis. Exception handling within JIT compiled code is not currently handled
automatically. All exceptions that are raised within a loop nest are reported back to the user
(Section 4.1.1).

Inter-procedural analysis: ALPyNA considers each loop nest within a function as a single
unit for dependence analysis. Currently only intra-procedural dependence analysis is per-
formed on the loop nest. Function calls within a loop nest allow for a richer representation
of programs. Although ALPyNA recognises calls to pure intrinsic functions that are sup-
ported by Numba, these calls are not subject to inter-procedural analysis and their validity
must be guaranteed by the user.

7.3.2 ALPyNA Cost Model

The ALPyNA Cost Model (ACM) is sufficient to support research hypothesis H3., but also
has some limitations. ACM currently considers the time taken for execution and data transfer
to select the performant device for JIT compilation. Compilation costs are currently not
taken into consideration. The implication of this limitation is that ACM never selects the
interpreter as the fastest device even for small iteration domains. However, JIT compilation
time for kernels can be a significant factor in overall execution time (Section 5.5). For
frequently executed kernels, it helps that Numba persists generated code in a compilation
cache. Fetching compiled kernels from a persistent cache will improve overall execution
times. Approaches to account for runtime compilation and fetching cached code (e.g. models
like [88]) are expected to be relatively straightforward to implement in ALPyNA. This work
is left for future work to improve ACM.

7.4 Future Work

Multi-device support: An immediate avenue for future work is to evaluate the performance
of code generated by ALPyNA on different kinds of devices in a heterogeneous environment.
Single board computers such as the NVIDIA Jetson [54] integrate the CPU and GPU into
a single system-on-chip architecture. Such systems can then exploit the shared RAM to
reduce the data transfer time. These could include devices such as parallelisation on multi-
core CPUs or other devices such as FPGA devices. ALPyNA’s Hardware Abstraction Layer
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(HAL) layer is modular and extensible, enabling easy addition of code generators for each
individual device.

The parameters required by the cost model are abstracted within this HAL. This allows
ACM’s cost model for each individual device to incorporate as many parameters as required
to accurately model device performance. ACM normalises the cost of execution of each
statement to the interpreter execution time. A relative cost calculation can be performed
across all devices This enables the prediction of a performant device for each loop nest.

The addition of a OpenCL based code generator would expand the range of target devices
that ALPyNA can parallelise and JIT compile code for. Support for a OpenCL compiler has
been very recently added to Numba to enable support for AMD GPUs.

Support for other linear co-routines: Loop nest domains are currently expressed only
using the range function. Other well understood non-mutable linear iterators such as
enumerate and list iterators are planned to be added for analysis. These may be imple-
mented either by transforming the loop nest during AST parsing to use the range function
or by building a map of (start, end , stride) values for each known co-routine for the purpose
of dependence analysis.

Support for comprehensions: Comprehensions are Python constructs that are generated
from other iterable sequences. They are often generated using nested loop structures. Cur-
rently, comprehension generators for GPUs are not supported. However, this is not a design
limitation and can be added with relative ease.

Optimisation improvements: ALPyNA generates one GPU kernel per statement to max-
imise opportunities for parallelisation (Section 6.2.3). When correctness can be ensured,
loop fusion may provide execution performance improvement of perfect loop nests. Loop
fusion reduces the overhead of launching GPU kernels from the interpreter. This will favour
GPU execution at smaller iteration domain sizes.

Loop analysis and GPU compilation for other dynamic languages: ALPyNA primarily
focusses its implementation on Python. However, the fundamental principles used in this
thesis can be transferred to other interpreted dynamic languages such as JavaScript and Ruby.
An interesting research avenue would be to see if a common IR or interface can be developed
to support other dynamic languages. This would be similar to the direction taken by MLIR
[80] for static languages. A corollary of this research could also look into how language level
features may affect the cost modelling to guide JIT compilation for target devices.

While parallelisation in general is a well-studied topic, the work in this thesis shows that
runtime parallelisation and JIT compilation of loops for dynamic languages is a feasible and
potentially rewarding area for exploration.
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Appendix A

Evaluation of ALPyNA on platform T2

Chapter 5 evaluated the performance of ALPyNA on two platforms T1 and T2. The runtime
performance and overheads for platform T1 are displayed within the chapter. This appendix
provides the corresponding results for T2.

Figure A.1 plots the total execution time of the CPython and ALPyNA runtimes over a large
number of domain sizes for the 12 benchmarks as described in Section 5.1. Table A.1 extracts
the minimum, maximum and mean relative speed-ups of the CPU relative to the interpreter.
Table A.2 shows the minimum, maximum and mean speed-ups of ALPyNA’s generated GPU
code relative to the CPython interpreter and JIT compiled CPU code. Figure A.2 shows the
proportion of time spent by ALPyNA for analysis, compilation and execution across all
iteration domain sizes. Figure A.3 plots the execution time of JIT compiled CPU and GPU
code generated by ALPyNA over a large number of domain sizes for the 12 benchmarks. for
analysis, compilation and execution across all iteration domain sizes. Figure A.4 displays a
graph showing the overheads incurred by ALPyNA for loop nests and Table A.3 summarises
these results.
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Figure A.1: Total execution time of ALPyNA generated code on the CPU and GPU vis-
a-vis the CPython VM on Platform T2 (Lower is better). Times are scaled logarithmically.
Total execution time includes analysis and code generation, compilation, and execution time.
Interpreter execution for the largest two domains of syr2k (2k × 2k and 4k × 4k) timed out
after 3 hours. Results are summarised in Table A.2.
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Benchmarks
JIT CPU vs CPython

min max mean

black-scholes
1.14 53.04 17.27
(32K) (16M)

convolution-2d
0.012 973.37 234.93
(16 x 16) (16K x 16K)

conway
0.005 32.02 6.05
(16 x 16) (1K x 1K)

fbcorr
229.31 722.62 540.05

(16x16x256x256) (16x8x1Kx1K)

gemm
0.032 1143.62 353.83
(16 x 16) (2K x 2K)

gemver
0.003 3859.98 412.59
(8 x 8) (16K x 16K)

hilbert
0.001 61.43 9.71
(16 x 16) (4K x 4K)

jacobi
0.0002 96.56 12.96

(4 x 4) (2K x 2K)

mandelbrot
0.22 364.85 116.47
(8 x 8) (1K x 1K)

saxpy
0.05 931.89 132.70
(1K) (32M)

syr2k
0.02 1290.19 335.33
(8 x 8) (512 x 512)

vadd
0.010 86.62 13.15

(1K) (16M)

Table A.1: Performance of JIT compiled CPU loop nest variant relative to CPython inter-
preter execution on platform T2. Iteration sizes corresponding to each data points are shown
in brackets.
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Benchmarks
Relative speedup

ALPyNA GPU
vs CPython

ALPyNA GPU
vs CPU JIT

min max mean min max mean

black-scholes
0.38 59.55 15.02 0.33 1.12 0.62
(32K) (16M) (32K) (16M)

convolution-2d
0.018 1897.53 411.4 1.32 1.94 1.50
(16x16) (16Kx16K) (2Kx2K) (16Kx16K)

conway
0.004 27.08 5.13 0.76 0.86 0.83
(16x16) (1Kx1K) (16x16) (512x512)

fbcorr
1247.82 2416.78 1820.78 2.65 7.61 4.97

(16x16x256x256) (16x8x1Kx1K) (16x8x256x256) (16x16x1Kx1K)

gemm
0.025 2885.78 732.73 0.71 2.52 1.28
(16x16) (2Kx2K) (64x64) (2Kx2K)

gemver
0.002 3795.96 366.67 0.46 0.98 0.67

(8x8) (8Kx8K) (4Kx4K) (16Kx16K)

hilbert
0.001 49.2 8.0 0.8 1.10 0.87
(16x16) (4Kx4K) (128x128) (1Kx1K)

jacobi
0.002 77.12 10.33 0.53 0.83 0.74

(4x4) (2Kx4K) (16x16) (4Kx4K)

mandelbrot
0.1 869.02 167.78 0.43 2.38 0.78
(8x8) (1Kx1K) (32x32) (1Kx1K)

saxpy
0.037 507.9 80.54 0.54 0.98 0.72

(1K) (32M) (32M) (128K)

syr2k
0.016 13894.955 2287.63 0.64 50.68 11.48

(8x8) (1Kx1K) (32x32) (4Kx4K)

vadd
0.016 44.62 7.77 0.44 0.86 0.64

(1K) (16M) (1K) (4M)

Table A.2: Performance of ALPyNA GPU kernels relative to CPython interpreter execution
and CPU JIT compiled loop nest on platform T2. Iteration sizes corresponding to each data
points are shown in brackets.
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Figure A.2: Proportion of time spent by ALPyNA for analysis, compilation and execution
on JIT compiled CPU and GPU code on Platform T2.
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Figure A.3: Execution time of ALPyNA generated code on the CPU vs the GPU on Platform
T2 (Lower is better). Times are scaled logarithmically. CPU execution time for the largest
domain of syr2k (4k × 4k) is omitted to better represent execution times of smaller domain
sizes.
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Figure A.4: ALPyNA runtime analysis and compilation overhead (Platform T2).

Benchmark
ALPyNA analysis + code generation (sec) Compilation (sec)

CPU GPU
CPU GPU

min max mean min max mean
black-scholes 0.024 1.152 0.509 0.031 1.328 0.543 0.321 0.992
convolution-2d 0.003 0.050 0.019 0.003 0.042 0.020 0.133 0.092
conway 0.004 0.006 0.005 0.004 0.005 0.005 0.164 0.196
fbcorr 0.006 0.111 0.049 0.009 0.100 0.049 0.183 0.130
gemm 0.002 0.004 0.003 0.002 0.004 0.003 0.090 0.093
gemver 0.008 0.132 0.071 0.009 0.172 0.070 0.212 0.300
hilbert 0.001 0.001 0.001 0.001 0.001 0.001 0.062 0.069
jacobi 0.003 0.004 0.003 0.003 0.004 0.003 0.133 0.180
mandelbrot 0.005 0.018 0.011 0.005 0.019 0.012 0.149 0.317
saxpy 0.001 0.008 0.002 0.001 0.001 0.001 0.047 0.061
syr2k 0.005 0.023 0.013 0.005 0.026 0.014 0.153 0.182
vadd 0.001 0.003 0.001 0.001 0.001 0.001 0.045 0.069

Table A.3: Analysis and code generation time taken by ALPyNA on platform T2 for CPU
and GPU. All times are in seconds.
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Appendix B

Evaluation of ACM on platform T2
and T3

Chapter 6 evaluated the performance of the cost model used to predict the performant target
device for JIT compilation. The evaluation was performed on three platforms T1, T2 and T3.
The graphs for misprediction penalites and mispredicted ranges for platform T1 is shown
within the chapter. This appendix provides the corresponding graphs for platforms T2 and
T3.

Figures B.1 and B.3 plot the predicted performant device for each benchmark over increasing
domain ranges for platforms T2 and T3 respectively. An optimal prediction is the value 1.0.
The misprediction penalty is the slowdown in execution due to a wrong prediction. Figure
B.2 and B.4 show the domain range over which the ACM predicts the wrong device for
platforms T2 and T3 respectively. This is done by plotting the actual execution times for the
CPU and GPU and interpolating the cross-over domain threshold of ACM. These domain
ranges are shaded in blue. Alongside this, the misprediction range of a trained SVM model
is also plotted in Figures B.1 and B.3 (shaded red). The intersecting domain ranges are
shaded purple.
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Figure B.1: ALPyNA Cost Model misprediction penalties for 12 loop-intensive benchmarks
with varying domain sizes on platform T2. Misprediction slowdown is the ratio of predicted
device runtime and faster device runtime, so optimal is always 1.0.
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Figure B.2: ALPyNA Cost Model misprediction ranges (shaded blue) for 12 loop-intensive
benchmarks with varying domain sizes on platform T2. ACM’s domain crossover point is
interpolated from the measured values. Misprediction range of SVM model is also shown
(shaded red). The domain ranges at which both models mispredict the performant device is
shaded purple.
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Figure B.3: ALPyNA Cost Model misprediction penalties for 12 loop-intensive benchmarks
with varying domain sizes on platform T3. Misprediction slowdown is the ratio of predicted
device runtime and faster device runtime, so optimal is always 1.0.
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Figure B.4: ALPyNA Cost Model misprediction ranges (shaded orange) for 12 loop-
intensive benchmarks with varying domain sizes on platform T3. ACM’s domain crossover
point is interpolated from the measured values. Misprediction range of SVM model is also
shown (shaded red). The domain ranges at which both models mispredict the performant
device is shaded purple.
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